Editorial for the Special Issue on Development of CMOS-MEMS/NEMS Devices
References
- Göktaş, H. Towards an Ultra-Sensitive Temperature Sensor for Uncooled Infrared Sensing in CMOS–MEMS Technology. Micromachines 2019, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Duraffourg, L.; Laurent, L.; Moulet, J.-S.; Arcamone, J.; Yon, J.-J. Array of Resonant Electromechanical Nanosystems: A Technological Breakthrough for Uncooled Infrared Imaging. Micromachines 2018, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Miguel, J.A.; Lechuga, Y.; Martinez, M. AFM-Based Characterization Method of Capacitive MEMS Pressure Sensors for Cardiological Applications. Micromachines 2018, 9, 342. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-N.; Dai, C.-L. Micro Magnetic Field Sensors Manufactured Using a Standard 0.18-μm CMOS Process. Micromachines 2018, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, L.; Li, K.H.H.; Tan, O.K. Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications—Towards the CMOS-MEMS Monolithic Approach. Micromachines 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, J.; Chen, W.; Yin, L.; Liu, X. A Novel High-Precision Digital Tunneling Magnetic Resistance-Type Sensor for the Nanosatellites’ Space Application. Micromachines 2018, 9, 121. [Google Scholar] [CrossRef] [PubMed]
- Perelló-Roig, R.; Verd, J.; Barceló, J.; Bota, S.; Segura, J. A 0.35-μm CMOS-MEMS Oscillator for High-Resolution Distributed Mass Detection. Micromachines 2018, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Riverola, M.; Torres, F.; Uranga, A.; Barniol, N. High Performance Seesaw Torsional CMOS-MEMS Relay Using Tungsten VIA Layer. Micromachines 2018, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.C.; Choi, W.Y. Encapsulation of NEM Memory Switches for Monolithic-Three-Dimensional (M3D) CMOS–NEM Hybrid Circuits. Micromachines 2018, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, J.; Liu, X. A High-Performance Digital Interface Circuit for a High-Q Micro-Electromechanical System Accelerometer. Micromachines 2018, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Wei, R.; Lee, J.; Xie, Y.; Mandal, S.; Feng, P.-L. A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip. Micromachines 2018, 9, 559. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verd, J.; Segura, J. Editorial for the Special Issue on Development of CMOS-MEMS/NEMS Devices. Micromachines 2019, 10, 273. https://doi.org/10.3390/mi10040273
Verd J, Segura J. Editorial for the Special Issue on Development of CMOS-MEMS/NEMS Devices. Micromachines. 2019; 10(4):273. https://doi.org/10.3390/mi10040273
Chicago/Turabian StyleVerd, Jaume, and Jaume Segura. 2019. "Editorial for the Special Issue on Development of CMOS-MEMS/NEMS Devices" Micromachines 10, no. 4: 273. https://doi.org/10.3390/mi10040273
APA StyleVerd, J., & Segura, J. (2019). Editorial for the Special Issue on Development of CMOS-MEMS/NEMS Devices. Micromachines, 10(4), 273. https://doi.org/10.3390/mi10040273