Speeding Up the Write Operation for Multi-Level Cell Phase Change Memory with Programmable Ramp-Down Current Pulses
Abstract
:1. Introduction
2. Phase Change Storage Technology
2.1. Basic Characteristics of Phase Change Memory
2.2. Multilevel-Cell Storage
3. Multilevel Cell Phase Change Memory Chip
3.1. Chip Architecture
3.2. Program Scheme and Circuit
3.3. Readout Scheme and Circuit
4. Experimental Results
4.1. The Resistance Distribution of 2-Bit/Cell Phase Change Memory
4.2. Resistance Drift
4.3. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, I.S.; Cho, S.L.; Im, D.H.; Cho, E.H.; Kim, D.H.; Oh, G.H.; Chung, C.H. High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications. In Proceedings of the 2010 Symposium on VLSI Technology, Honolulu, HI, USA, 15–17 June 2010; pp. 203–204. [Google Scholar] [CrossRef]
- Close, G.F.; Frey, U.; Morrish, J.; Jordan, R.; Lewis, S.C.; Maffitt, T.; Eleftheriou, E. A 256-Mcell Phase-Change Memory Chip Operating at 2+Bit/Cell. In IEEE Transactions on Circuits and Systems I: Regular Papers; IEEE: Piscataway, NJ, USA, 2013; Volume 60, pp. 1521–1533. [Google Scholar]
- Nandakumar, S.R.; Boybat, I.; le Gallo, M.; Sebastian, A.; Rajendran, B.; Eleftheriou, E. Supervised learning in spiking neural networks with MLC PCM synapses. In Proceedings of the 2017 75th Annual Device Research Conference (DRC), South Bend, IN, USA, 25–28 June 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Lee, J.; Lim, D.; Jeong, H.; Ma, H.; Shi, L. Exploring Cycle-to-Cycle and Device-to-Device Variation Tolerance in MLC Storage-Based Neural Network Training. In IEEE Transactions on Electron Devices; IEEE: Piscataway, NJ, USA, 2019; Volume 66, pp. 2172–2178. [Google Scholar]
- Nirschl, T.; Philipp, J.B.; Happ, T.D.; Burr, G.W.; Rajendran, B.; Lee, M.H.; Joseph, E. Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 461–464. [Google Scholar] [CrossRef]
- Close, G.F.; Frey, U.; Breitwisch, M.; Lung, H.L.; Lam, C.; Hagleitner, C.; Eleftheriou, E. Device, circuit and system-level analysis of noise in multi-bit phase-change memory. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 29.5.1–29.5.4. [Google Scholar] [CrossRef]
- Papandreou, N.; Pozidis, H.; Pantazi, A.; Sebastian, A.; Breitwisch, M.; Lam, C.; Eleftheriou, E. Programming algorithms for multilevel phase-change memory. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 329–332. [Google Scholar] [CrossRef]
- Papandreou, N.; Sebastian, A.; Pantazi, A.; Breitwisch, M.; Lam, C.; Pozidis, H.; Eleftheriou, E. Drift-resilient cell-state metric for multilevel phase-change memory. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 3.5.1–3.5.4. [Google Scholar] [CrossRef]
- Stanisavljevic, M.; Athmanathan, A.; Papandreou, N.; Pozidis, H.; Eleftheriou, E. Phase-change memory: Feasibility of reliable multilevel-cell storage and retention at elevated temperatures. In Proceedings of the 2015 IEEE International Reliability Physics Symposium, Monterey, CA, USA, 19–23 April 2015; pp. 5B.6.1–5B.6.6. [Google Scholar] [CrossRef]
- Raoux, S.; Burr, G.W.; Breitwisch, M.J.; Rettner, C.T.; Chen, Y.C.; Shelby, R.M.; Lam, C.H. Phase-change random access memory: A scalable technology. IBM J. Res. Dev. 2019, 52, 465–479. [Google Scholar] [CrossRef]
- Lee, K.J.; Cho, B.H.; Cho, W.Y.; Kang, S.; Choi, B.G.; Oh, H.R.; Park, M.H. A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput. In Proceedings of the 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, 11–15 February 2007; pp. 472–616. [Google Scholar] [CrossRef]
- Bedeschi, F.; Boffmo, C.; Bonizzoni, E.; Resta, C.; Torelli, G.; Zella, D. Set-sweep programming pulse for phase-change memories. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, Island of Kos, Greece, 21–24 May 2006. [Google Scholar] [CrossRef]
- Ielmini, D.; Lavizzari, S.; Sharma, D.; Lacaita, A.L. Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 939–942. [Google Scholar] [CrossRef]
Chips | Chip Proposed in This Paper | Chip Proposed in [2] |
---|---|---|
CMOS Technology | ||
Node | SMIC 40 nm | 90 nm |
Supply Voltage | 2.5 V | Digital: 1.2 V Phase change memory (PCM) and analog: 2.5–3.0 V |
PCM Cell Array | ||
Material | C-GST | Doped GST |
Access Device | NMOS | NMOS |
Cells | 4 M cells, 16 accessed in parallel | 256 M cells, 16 accessed in parallel |
Write | ||
Access Time | RESET 52 ns+SET 1.5 μs @ 2 bits/cell | 9.7 μs @ 2 bits/cell |
Program Scheme | Programmable ramp down current pulse | Open-loop single shot, or closed-loop write and verify with one ADC and two DACs integrated in the chip |
Readout | ||
Access Time | 65 ns @ 2 bits/cell | 320 ns @ 2 bits/cell |
Read Scheme | Fully differential read circuit with optional reference current source | 1 bit range+6-bit ADC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Li, X.; Chen, H.; Li, Y.; Liu, Y.; Wang, Q.; Ren, K.; Song, Z. Speeding Up the Write Operation for Multi-Level Cell Phase Change Memory with Programmable Ramp-Down Current Pulses. Micromachines 2019, 10, 461. https://doi.org/10.3390/mi10070461
Xie C, Li X, Chen H, Li Y, Liu Y, Wang Q, Ren K, Song Z. Speeding Up the Write Operation for Multi-Level Cell Phase Change Memory with Programmable Ramp-Down Current Pulses. Micromachines. 2019; 10(7):461. https://doi.org/10.3390/mi10070461
Chicago/Turabian StyleXie, Chenchen, Xi Li, Houpeng Chen, Yang Li, Yuanguang Liu, Qian Wang, Kun Ren, and Zhitang Song. 2019. "Speeding Up the Write Operation for Multi-Level Cell Phase Change Memory with Programmable Ramp-Down Current Pulses" Micromachines 10, no. 7: 461. https://doi.org/10.3390/mi10070461
APA StyleXie, C., Li, X., Chen, H., Li, Y., Liu, Y., Wang, Q., Ren, K., & Song, Z. (2019). Speeding Up the Write Operation for Multi-Level Cell Phase Change Memory with Programmable Ramp-Down Current Pulses. Micromachines, 10(7), 461. https://doi.org/10.3390/mi10070461