Improved MRD 4H-SiC MESFET with High Power Added Efficiency
Abstract
:1. Introduction
2. Device Structure and Description
3. Results and Discussion
3.1. Effect of the Length and Height of the Recessed Regions on the PAE
3.2. Optimized Results and Mechanism Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murugapandiyan, P.; Ravimaran, S.; William, J. DC and microwave characteristics of Lg 50 nm T-gate InAlN/AlN/GaN HEMT for future high power RF applications. AEU Int. J. Electron. Commun. 2017, 31, 163–168. [Google Scholar] [CrossRef]
- Prasad, D.A.; Komaragiri, R. Performance comparison of 4H-SiC MESFETs. In Proceedings of the 2013 Annual International Conference Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy (AICERA/ICMiCR), Kanjirapally, India, 4–6 June 2013; pp. 1–5. [Google Scholar]
- Kesilmis, Z.; Avc, M.; Aksoy, M. An Operational Transconductance Amplifier with 45 nm FINFET Technology; CiteSeerX Scientific Literature Digital Library, Penn State University’s School of Information Sciences and Technology: University Park, PA, USA, 2011. [Google Scholar]
- Zhu, C.L.; Tin, C.C.; Zhang, G.H.; Yoon, S.F.; Ahn, J. Improved performance of SiC MESFETs using double-recessed structure. Microelectron. Eng. 2006, 83, 92–95. [Google Scholar] [CrossRef]
- Jia, H.; Ma, P.; Luo, Y.; Yang, Z.; Wang, Z.; Wu, Q.; Hu, M. A novel 4H-SiC MESFET with double upper gate and recessed p-buffer. Superlattices Microstruct. 2016, 97, 346–352. [Google Scholar] [CrossRef]
- Orouji, A.A.; Shahnazarisani, H.; Anvarifard, M.K. Simulation analysis of a novel dualtrench structure for a high power silicon-on-insulator metal–semiconductor field effect transistor. Mater. Sci. Semicond. Process. 2014, 31, 506–511. [Google Scholar] [CrossRef]
- Aminbeidokhti, A.; Orouji, A.A. A novel 4H-SiC MESFET with modified channel depletion region for high power and high frequency applications. Phys. E Low Dimens. Syst. Nanostruct. 2011, 44, 708–713. [Google Scholar] [CrossRef]
- Moghadam, H.A.; Orouji, A.A.; Mahabadi, S.E.J. Employing reduced surface field technique by a P-type region in 4H-SiC metal semiconductor field effect transistors for increasing breakdown voltage. Int. J. Numer. Model. Electron. Netw. Devices Fields 2013, 26, 103–111. [Google Scholar] [CrossRef]
- Naderi, A.; Heirani, F. A novel SOI-MESFET with symmetrical oxide boxes at both sides of gate and extended drift region into the buried oxide. AEU Int. J. Electron. Commun. 2018, 85, 91–98. [Google Scholar] [CrossRef]
- Mohammadi, H.; Naderi, A. A Novel SOI-MESFET with Parallel Oxide-Metal Layers for High Voltage and Radio Frequency Applications. AEU Int. J. Electron. Commun. 2017, 83, 541–548. [Google Scholar] [CrossRef]
- Jia, H.; Hu, M.; Zhu, S. An Improved UU-MESFET with High Power Added Efficiency. Micromachines 2018, 9, 573. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhu, S.; Hu, M.; Tong, Y.; Li, T.; Yang, Y. An improved DRBL AlGaN/GaN HEMT with high power added efficiency. Mater. Sci. Semicond. Process. 2019, 89, 212–215. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, M.J. A Planar Junctionless FET Using SiC With Reduced Impact of Interface Traps: Proposal and Analysis. IEEE Trans. Electron Devices 2017, 64, 4430–4434. [Google Scholar] [CrossRef]
- Della Corte, F.G.; Pezzimenti, F.; Bellone, S.; Nipoti, R. Numerical simulations of a 4H-SiC BMFET power transistor with normally-off characteristics. Mater. Sci. Forum 2011, 679, 621–624. [Google Scholar] [CrossRef]
- Lien, W.C.; Damrongplasit, N.; Paredes, J.H.; Senesky, D.G.; Liu, T.J.K.; Pisano, A.P. 4H-SiC N-Channel JFET for Operation in High-Temperature Environments. IEEE J. Electron Devices Soc. 2014, 2, 164–167. [Google Scholar] [CrossRef]
- Pezzimenti, F. Modeling of the steady state and switching characteristics of a normally-off 4H-SiC trench bipolar-mode FET. IEEE Trans. Electron Devices 2013, 60, 1404–1411. [Google Scholar] [CrossRef]
- Jaikumar, M.G.; Karmalkar, S. Calibration of Mobility and Interface Trap Parameters for High Temperature TCAD Simulation of 4H-SiC VDMOSFETs. Mater. Sci. Forum 2012, 717, 1101–1104. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, X.; Luo, X.; Zhang, B.; Li, Z. Improved Characteristics of 4H-SiC MESFET with Multi-recessed Drift Region. In Proceeding of the 2007 International Workshop on Electron Devices & Semiconductor Technology, Beijing, China, 3–4 June 2007. [Google Scholar]
- Elahipanah, H. Record gain at 3.1 ghz of 4h-sic high power rf mesfet. Microelectron. J. 2011, 42, 299–304. [Google Scholar] [CrossRef]
- Jia, H.; Pei, X.; Sun, Z.; Zhang, H. Improved performance of 4H-silicon carbide metal semiconductor field effect transistors with multi-recessed source/drain drift regions. Mater. Sci. Semicond. Process. 2015, 31, 240–244. [Google Scholar] [CrossRef]
- Sentaurus Device User Guide, version L-2016.03; Synopsys Inc.: Mountain View, CA, USA, 2016.
- Tenedorio, J.G.; Terzian, P.A. Effects of Si3N4, SiO, and polyimide surface passivations on gaas mesfet amplifier RF stability. IEEE Electron Device Lett. 1984, 5, 199–202. [Google Scholar] [CrossRef]
- Charache, G.W.; Akram, S.; Maby, E.W.; Bhat, I.B. Surface passivation of gaas mesfets. IEEE Trans. Electron Devices 1997, 44, 1837–1842. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
P-Buffer Concentration | 1.4 × 1015 cm−3 |
N-Channel Concentration | 3 × 1017 cm−3 |
N-Cap layers Concentration | 2 × 1019 cm−3 |
Lgs | 0.5 μm |
Lgd | 1.0 μm |
Ls | 0.5 μm |
Ld | 0.5 μm |
Lg | 0.7 μm |
N-Channel Thickness | 0.25 μm |
P-Buffer Thickness | 0.5 μm |
Device Area (without SI-Substrate) | 1 μm × 3.5 μm |
Parameters | MRD MESFET | IMRD MESFET |
---|---|---|
Idsat (mA/mm) | 358.97 | 233.02 |
gm (mS/mm) | 73.45 | 56.37 |
Vt (V) | −5.81 | −6.89 |
Cgs (pF/mm) | 0.128 | 0.13 |
Cgd (pF/mm) | 0.39 | 0.02 |
Power-added efficiency (PAE) (%) | 53.11 | 70.85 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Jia, H.; Wang, X.; Liang, Y.; Tong, Y.; Li, T.; Yang, Y. Improved MRD 4H-SiC MESFET with High Power Added Efficiency. Micromachines 2019, 10, 479. https://doi.org/10.3390/mi10070479
Zhu S, Jia H, Wang X, Liang Y, Tong Y, Li T, Yang Y. Improved MRD 4H-SiC MESFET with High Power Added Efficiency. Micromachines. 2019; 10(7):479. https://doi.org/10.3390/mi10070479
Chicago/Turabian StyleZhu, Shunwei, Hujun Jia, Xingyu Wang, Yuan Liang, Yibo Tong, Tao Li, and Yintang Yang. 2019. "Improved MRD 4H-SiC MESFET with High Power Added Efficiency" Micromachines 10, no. 7: 479. https://doi.org/10.3390/mi10070479
APA StyleZhu, S., Jia, H., Wang, X., Liang, Y., Tong, Y., Li, T., & Yang, Y. (2019). Improved MRD 4H-SiC MESFET with High Power Added Efficiency. Micromachines, 10(7), 479. https://doi.org/10.3390/mi10070479