Narrow Linewidth Distributed Bragg Reflectors Based on InGaN/GaN Laser
Abstract
:1. Introduction
2. Simulation and Fabrication
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Killinger, D. Free space optics for laser communication through the air. Opt. Photon. News 2002, 13, 36–42. [Google Scholar] [CrossRef]
- Watson, S.; Tan, M.; Najda, S.P.; Perlin, P.; Leszczynski, M.; Targowski, G.; Grzanka, S.; Kelly, A.E. Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett. 2013, 38, 3792–3794. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, B.; Shi, Z.; Wang, J.; Li, X.; Gao, X.; Yuan, J.; Li, Y.; Jiang, Y.; Wang, Y. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration. Opt. Mater. 2017, 66, 659–663. [Google Scholar] [CrossRef]
- Khan, L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. J. 2017, 3, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Zafar, F.; Bakaul, M.; Parthiban, R. Laser-diode-based visible light communication: Toward gigabit class communication. IEEE Commun. Mag. 2017, 55, 144–151. [Google Scholar] [CrossRef]
- Pimputkar, S.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Prospects for LED lighting. Nat. Photonics. 2009, 3, 180. [Google Scholar] [CrossRef]
- Kang, C.M.; Kong, D.J.; Shim, J.P.; Kim, S.; Choi, S.B.; Lee, J.Y.; Min, J.H.; Seo, D.J.; Choi, S.Y.; Lee, D.S. Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display. Opt. Express 2017, 25, 2489–2495. [Google Scholar] [CrossRef]
- Dadabayev, R.; Shabairou, N.; Zalevsky, Z.; Malka, D. A visible light RGB wavelength demultiplexer based on silicon-nitride multicore PCF. Opt. Laser. Technol. 2019, 111, 411–416. [Google Scholar] [CrossRef]
- Feng, M.; Wang, J.; Zhou, R.; Sun, Q.; Gao, H.; Zhou, Y.; Liu, J.; Huang, Y.; Zhang, S.; Ikeda, M.; et al. On-chip integration of GaN-based laser, modulator, and photodetector grown on Si. IEEE J. Sel. Top. Quant. 2018, 24, 1–5. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhu, B.; Shi, Z.; Yuan, J.; Gao, X.; Liu, Y.; Sun, X.; Li, D.; Amano, H. Full-duplex light communication with a monolithic multicomponent system. Light Sci. Appl. 2018, 7, 83. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Yuan, J.; Gao, X.; Zhu, B. Monolithic III–nitride photonic circuit towards on-chip optical interconnection. Appl. Phys. Express 2018, 11, 122201. [Google Scholar] [CrossRef]
- Wang, H.; Kumagai, M.; Tawara, T.; Nishida, T.; Akasaka, T.; Kobayashi, N.; Saitoh, T. Fabrication of an InGaN multiple-quantum-well laser diode featuring high reflectivity semiconductor/air distributed Bragg reflectors. Appl. Phys. Lett. 2002, 81, 4703–4705. [Google Scholar] [CrossRef]
- Hofling, E.; Schafer, F.; Reithmaier, J.P.; Forchel, A. Edge-emitting GaInAs-AlGaAs microlasers. IEEE Photon. Tech. Lett. 1999, 11, 943–945. [Google Scholar] [CrossRef]
- Oku, S.; Kondo, S.; Noguchi, Y.; Hirono, T.; Nakao, M.; Tamamura, T. Surface-grating distributed Bragg reflector lasers with deeply etched grooves formed by reactive beam etching. Jpn. J. Appl. Phys. 1999, 38, 1256. [Google Scholar] [CrossRef]
- Roh, S.D.; Lee, K.E.; Hughes, J.S.; Coleman, J.J. Single and tunable dual-wavelength operation of an InGaAs-GaAs ridge waveguide distributed Bragg reflector laser. IEEE Photon. Tech. Lett. 2000, 12, 16–18. [Google Scholar] [CrossRef]
- Paschke, K.; Behrendt, J.; Maiwald, M.; Fricke, J.; Wenzel, H.; Erbert, G. High power single mode 980nm DBR tapered diode lasers with integrated sixth order surface gratings based on simplified fabrication process. In Proceedings of the SPIE Photonics Europe, Strasbourg, France, 3–7 April 2006; p. 618401. [Google Scholar]
- Bach, L.; Rennon, S.; Reithmaier, J.P.; Forchel, A.; Gentner, J.L.; Goldstein, L. Laterally coupled DBR laser emitting at 1.55 μm fabricated by focused ion beam lithography. IEEE Photon. Tech. Lett. 2002, 14, 1037–1039. [Google Scholar] [CrossRef]
- Hou, L.; Haji, M.; Dylewicz, R.; Qiu, B.; Bryce, A.C. Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology. IEEE Photon. Tech. Lett. 2010, 22, 1039–1041. [Google Scholar] [CrossRef]
- Jiang, L.; Achtenhagen, M.; Amarasinghe, N.V.; Young, P.; Evans, G. High-power DBR laser diodes grown in a single epitaxial step. In Proceedings of the SPIE OPTO: Integrated Optoelectronic Devices, San Jose, CA, USA, 24–29 January 2009; p. 72301F. [Google Scholar]
- Sumpf, B.; Hasler, K.H.; Adamiec, P.; Bugge, F.; Fricke, J.; Ressel, P.; Wenzel, H.; Erbert, G.; Tränkle, G. 1060 nm DBR tapered lasers with 12 W output power and a nearly diffraction limited beam quality. In Proceedings of the SPIE OPTO: Integrated Optoelectronic Devices, San Jose, CA, USA, 24–29 January 2009; p. 72301E. [Google Scholar]
- Li, J.; Liu, W.; Li, Y.; Visovsky, N.; Pikula, D.; Heberle, A.; Brown, G.; Piech, G.; Butler, D.; Zah, C.E. 350 mW green light emission from a directly frequency-doubled DBR laser in a compact package. In Proceedings of the IEEE Photonic Society 24th Annual Meeting, Arlington, VA, USA, 9–13 October 2011; pp. 292–293. [Google Scholar]
- Sanz, D.C.; Rorison, J.M.; Yu, S. InGaN/GaN MQW laser diodes with 4th order FIB-etched gratings. In Proceedings of the Quantum Electronics and Laser Science Conference, Baltimore, MD, USA, 22–27 May 2005; p. JTuC82. [Google Scholar]
- Dumitru, V.; Schweizer, H.; Grabeldinger, H.; Harle, R.; Bader, S.; Brurderl, G.; Weimar, A.; Lell, A.; Harle, V. InGaN/GaN multi-quantum well distributed Bragg reflector laser diode with second-order gratings. Electro. Lett. 2003, 39, 372–373. [Google Scholar] [CrossRef]
- Cho, J.; Cho, S.; Kim, B.J.; Chae, S.; Sone, C.; Nam, O.H.; Lee, J.W.; Kim, T.I. InGaN/GaN multi-quantum well distributed Bragg reflector laser diode. Appl. Phys. Lett. 2000, 76, 1489–1491. [Google Scholar] [CrossRef]
- Dorsaz, J.; Boïko, D.L.; Sulmoni, L.; Carlin, J.F.; Scheibenzuber, W.G.; Schwarz, U.T.; Grandjean, N. Optical bistability in InGaN-based multisection laser diodes. Appl. Phys. Lett. 2011, 98, 191115. [Google Scholar] [CrossRef]
- Ren, Q.; Zhang, B.; Zhang, B.; Xu, J.; Yang, Z.J.; Hu, X.D. Micro-zone optical measurements on GaN based nitride/air distributed Bragg reflector (DBR) mirrors made by focused ion beam milling. Phys. Status Solidi C 2004, 1, 2450–2453. [Google Scholar] [CrossRef]
- Bao, S.; Song, Q.; Xie, C. The influence of grating shape formation fluctuation on DFB laser diode threshold condition. Opt. Rev. 2018, 25, 330–335. [Google Scholar] [CrossRef]
- Fricke, J.; John, W.; Klehr, A.; Ressel, P.; Weixelbaum, L.; Wenzel, H.; Erbert, G. Properties and fabrication of high-order bragg gratings for wavelength stabilization of diode lasers. Semicond. Sci. Tech. 2012, 27, 055009. [Google Scholar] [CrossRef]
Sample Name | Sample 1 | Sample 2 | Sample 3 | Sample 4 |
---|---|---|---|---|
Designed period | - | 1550 nm | 1550 nm | 1550 nm |
Designed duty ratio | - | 50% | 75% | 95% |
Fabricated period | - | 1583 nm | 1601 nm | 1589 nm |
Duty ratio | - | 44% | 75% | 92% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Li, J.; Liao, M.; Deng, Z.; Wang, W.; Sun, S. Narrow Linewidth Distributed Bragg Reflectors Based on InGaN/GaN Laser. Micromachines 2019, 10, 529. https://doi.org/10.3390/mi10080529
Xie W, Li J, Liao M, Deng Z, Wang W, Sun S. Narrow Linewidth Distributed Bragg Reflectors Based on InGaN/GaN Laser. Micromachines. 2019; 10(8):529. https://doi.org/10.3390/mi10080529
Chicago/Turabian StyleXie, Wuze, Junze Li, Mingle Liao, Zejia Deng, Wenjie Wang, and Song Sun. 2019. "Narrow Linewidth Distributed Bragg Reflectors Based on InGaN/GaN Laser" Micromachines 10, no. 8: 529. https://doi.org/10.3390/mi10080529
APA StyleXie, W., Li, J., Liao, M., Deng, Z., Wang, W., & Sun, S. (2019). Narrow Linewidth Distributed Bragg Reflectors Based on InGaN/GaN Laser. Micromachines, 10(8), 529. https://doi.org/10.3390/mi10080529