Direct Patterning of a Carbon Nanotube Thin Layer on a Stretchable Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Elastomer Substrates
2.3. Surface Masking and Surface Activation with O2 Plasma Treatment
2.4. Carbon Nanotube (CNT) Deposition with Meniscus-Dragging Deposition
2.5. Formation of Electrode and CNT Encapsulation
2.6. Contact Angle and Cross Points Measurement
2.7. Electrical Properties Measurement
2.8. Mechanical Properties Measurement
2.9. Image Processing for Analysis of Uniformity and Sharpness
3. Results and Discussion
3.1. O2 Treatment of the Stretchable Substrate Surface
3.2. Mask Selection
3.3. CNT Pattern with Direct Patterning
3.4. CNT Pattern in a Sensing Platform
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wu, W. Stretchable electronics: Functional materials, fabrication strategies and applications. Sci. Technol. Adv. Mater. 2019, 20, 187–224. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, R.; Chan, K.H.; Lu, X.; Sun, J.; Ho, G.W. A biomimetic conductive tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACS Nano. 2018, 12, 3898–3907. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, J.; Wang, W.; Wang, G.J.N.; Rastak, R.; Molina-Lopez, F.; Chung, J.W.; Niu, S.; Feig, V.R.; Lopez, J.; et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Han, S.I.; Kim, D.; Hyeon, T.; Kim, D.H. High-performance stretchable conductive nanocomposites: Materials, processes, and device applications. Chem. Soc. Rev. 2019, 48, 1566–1595. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Chou, N.; Kim, S. A batteryless, wireless strain sensor using resonant frequency modulation. Sensors 2018, 18, 3955. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef]
- Costa, J.C.; Spina, F.; Lugoda, P.; Garcia-Garcia, L.; Roggen, D.; Münzenrieder, N. Flexible sensors—from materials to applications. Technol. 2019, 7, 35. [Google Scholar] [CrossRef]
- Webb, R.C.; Bonifas, A.P.; Behnaz, A.; Zhang, Y.; Yu, K.J.; Cheng, H.; Shi, M.; Bian, Z.; Liu, Z.; Kim, Y.-S.; et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef]
- Kim, K.; Park, Y.G.; Hyun, B.G.; Choi, M.; Park, J.U. Recent advances in transparent electronics with stretchable forms. Adv. Mater. 2019, 31, 1804690. [Google Scholar] [CrossRef]
- Yao, S.; Swetha, P.; Zhu, Y. Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 2018, 7, 1700889. [Google Scholar] [CrossRef]
- Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, X.; Huo, Z.; Li, X.; Que, M.; Peng, Z.; Wang, H.; Pan, C. A Highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, 1706738. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Yu, Q.; Hu, Y.; Cui, X.; Zhu, Y.; Jiang, W. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos. Sci. Technol. 2018, 168, 388–396. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Song, H.; Huang, H.; Gou, J. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity. ACS Appl. Mater. Interfaces 2018, 10, 7371–7380. [Google Scholar] [CrossRef]
- Amjadi, M.; Yoon, Y.J.; Park, I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnol. 2015, 26, 375501. [Google Scholar] [CrossRef]
- Cai, L.; Wang, C. Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 2015, 10, 320. [Google Scholar] [CrossRef]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef]
- Bu, Q.; Zhan, Y.; He, F.; Lavorgna, M.; Xia, H. Stretchable conductive films based on carbon nanomaterials prepared by spray coating. J. Appl. Polym. Sci. 2016, 133, 43243. [Google Scholar] [CrossRef]
- Singla, M.K.; Singh, H.; Chawla, V. Thermal sprayed CNT reinforced nanocomposite coatings–a review. J. Miner. Mater. Char. Eng. 2011, 10, 717–726. [Google Scholar] [CrossRef]
- Hu, L.; Hecht, D.S.; Grüner, G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790–5844. [Google Scholar] [CrossRef]
- Purohit, R.; Purohit, K.; Rana, S.; Rana, R.S.; Patel, V. Carbon nanotubes and their growth methods. Procedia Mater. Sci. 2014, 6, 716–728. [Google Scholar] [CrossRef]
- Talapatra, S.; Kar, S.; Pal, S.K.; Vajtai, R.; Ci, L.; Victor, P.; Shailumon, M.M.; Kaur, S.; Nalamasu, O.; Ajayan, P.M. Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 2006, 1, 112–116. [Google Scholar] [CrossRef]
- Ko, Y.; Kim, N.H.; Lee, N.R.; Chang, S.T. Meniscus-dragging deposition of single-walled carbon nanotubes for highly uniform, large-area, transparent conductors. Carbon 2014, 77, 964–972. [Google Scholar] [CrossRef]
- Chae, M.S.; Kim, J.; Jeong, D.; Kim, Y.; Roh, J.H.; Lee, S.M.; Heo, Y.; Kang, J.Y.; Lee, J.H.; Yoon, D.S.; et al. Enhancing surface functionality of reduced graphene oxide biosensors by oxygen plasma treatment for Alzheimer’s disease diagnosis. Biosens. Bioelectron. 2017, 92, 610–617. [Google Scholar] [CrossRef]
- Kim, J.; Chae, M.S.; Lee, S.M.; Jeong, D.; Lee, B.C.; Kim, Y.-S.; Lee, J.H.; Chang, S.T.; Hwang, K.S. Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma. Sci. Rep. 2016, 6, 31276. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Yun., Y.; Kim, S. Improvement of interpixel uniformity in carbon nanotube field emission display by luminance correction circuit. IEEE Trans. Electron Devices 2008, 55, 768–773. [Google Scholar] [CrossRef]
- Cho, H.; Yoon, H.; Yoon, J. Analysis of crack image recognition characteristics in concrete structures depending on the illumination and image acquisition distance through outdoor experiments. Sensors 2016, 16, 1646. [Google Scholar] [CrossRef]
- Seghir, R.; Arscott, S. Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces. Sci. Rep. 2015, 5, 14787. [Google Scholar] [CrossRef]
Mixture Ratio | 100:0 | 10:1 | 5:1 | ||||
---|---|---|---|---|---|---|---|
Plasma Time (s) | Contact Angle (°) | Cross Points | Contact Angle (°) | Cross Points | Contact Angle (°) | Cross Points | |
0 | 102.32 ± 3.75 | 0 | 102.73 ± 1.29 | 0 | 96.51 ± 2.36 | 0 | |
15 | 12.65 ± 2.42 | 0 | 9.76 ± 0.21 | 0 | 10.22 ± 0.46 | 0 | |
30 | 10.65 ± 1.39 | 4.8 ± 0.36 | 11.05 ± 0.64 | 2.7 ± 1.15 | 10.14 ± 1.18 | 0.8 ± 0.94 | |
45 | 11.02 ± 0.77 | 15.0 ± 5.72 | 11.54 ± 0.67 | 8.30 ± 1.46 | 11.51 ± 0.96 | 13.7 ± 2.71 |
Name | Materials | Thickness (μm) |
---|---|---|
OHP 100 | Overhead projector film (OHP) | 100 |
OPP 30 | Oriented polypropylene (OPP) | 30 |
PI 25 | Polyimide (PI) | 25 |
Teflon 25 | Teflon | 25 |
Teflon 50 | Teflon | 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Kim, H.J.; Park, Y.; Lee, S.; Lee, S.Y.; Ha, T.; Shin, H.-J.; Kim, Y.; Kim, J. Direct Patterning of a Carbon Nanotube Thin Layer on a Stretchable Substrate. Micromachines 2019, 10, 530. https://doi.org/10.3390/mi10080530
Lee E, Kim HJ, Park Y, Lee S, Lee SY, Ha T, Shin H-J, Kim Y, Kim J. Direct Patterning of a Carbon Nanotube Thin Layer on a Stretchable Substrate. Micromachines. 2019; 10(8):530. https://doi.org/10.3390/mi10080530
Chicago/Turabian StyleLee, Eunji, Hye Jin Kim, Yejin Park, Seungjun Lee, Sae Youn Lee, Taewon Ha, Hyun-Joon Shin, Youngbaek Kim, and Jinsik Kim. 2019. "Direct Patterning of a Carbon Nanotube Thin Layer on a Stretchable Substrate" Micromachines 10, no. 8: 530. https://doi.org/10.3390/mi10080530
APA StyleLee, E., Kim, H. J., Park, Y., Lee, S., Lee, S. Y., Ha, T., Shin, H. -J., Kim, Y., & Kim, J. (2019). Direct Patterning of a Carbon Nanotube Thin Layer on a Stretchable Substrate. Micromachines, 10(8), 530. https://doi.org/10.3390/mi10080530