Recent Advances in Electrochemiluminescence Sensors for Pathogenic Bacteria Detection
Abstract
:1. Introduction
2. Electrochemiluminescence (ECL)-Based Detection of Pathogen
2.1. ECL Probe
2.2. Direct Detection of Pathogens
2.2.1. Antibody Based ECL Sensors
2.2.2. Antibiotic- or Lectin-Based ECL Sensors
2.2.3. Aptamer-Based ECL Sensors
2.3. Nucleic Acid-Based Detection
2.4. Paper-Based Bipolar Electrode for Pathogen Detection
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.; Andler, S.M.; Goddard, J.M.; Nugen, S.R.; Rotello, V.M. Integrating Recognition Elements with Nanomaterials for Bacteria Sensing. Chem. Soc. Rev. 2017, 46, 1272–1283. [Google Scholar] [CrossRef] [PubMed]
- Mukama, O.; Sinumvayo, J.P.; Shamoon, M.; Shoaib, M.; Mushimiyimana, H.; Safdar, W.; Bemena, L.; Rwibasira, P.; Mugisha, S.; Wang, Z. An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens. Food Anal. Methods 2017, 10, 2549–2565. [Google Scholar] [CrossRef]
- Batista, A.C.; Pacheco, L.G. Detecting pathogens with Zinc-Finger, TALE and CRISPR- based programmable nucleic acid binding proteins. J. Microbiol. Methods 2018, 152, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Bhardwaj, S.K.; Bhatt, D.; Lim, D.K.; Kim, K.-H.; Deep, A. Optical detection of waterborne pathogens using nanomaterials. TRAC Trends Anal. Chem. 2019, 113, 280–300. [Google Scholar] [CrossRef]
- Chanda, K.; Mm, B. Biosensors for pathogen surveillance. Environ. Chem. Lett. 2018, 16, 1325–1337. [Google Scholar]
- Magaña, S.; Schlemmer, S.M.; Leskinen, S.D.; Kearns, E.A.; Lim, D.V. Automated dead-end ultrafiltration for concentration and recovery of total coliform bacteria and laboratory-spiked escherichia coli o157:H7 from 50-L produce washes to enhance detection by an electrochemiluminescence immunoassay. J Food Prot. 2013, 76, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Shelton, D.R.; Van Kessel, J.A.S.; Wachtel, M.R.; Belt, K.T.; Karns, J.S. Evaluation of parameters affecting quantitative detection of Escherichia coli O157 in enriched water samples using immunomagnetic electrochemiluminescence. J. Microbiol. Methods 2003, 55, 717–725. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, R.; Liu, W.; Liu, H.; Zhou, X.; Xing, D. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens. Bioelectron. 2016, 86, 1–7. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, F.; Liu, F.; Zhu, M.; Zhou, X.; Xing, D. Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Biosens. Bioelectron. 2014, 62, 38–46. [Google Scholar] [CrossRef]
- Fu, Z.; Zhou, X.; Xing, D. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles. Methods 2013, 64, 260–266. [Google Scholar] [CrossRef]
- Fu, Z.; Zhou, X.; Xing, D. Rapid colorimetric gene-sensing of food pathogenic bacteria using biomodification-free gold nanoparticle. Sens. Actuators B Chem. 2013, 182, 633–641. [Google Scholar] [CrossRef]
- Yao, L.; Ye, Y.; Teng, J.; Xue, F.; Pan, D.; Li, B.; Chen, W. In Vitro Isothermal Nucleic Acid Amplification Assisted Surface-Enhanced Raman Spectroscopic for Ultrasensitive Detection of Vibrio parahaemolyticus. Anal. Chem. 2017, 89, 9775–9780. [Google Scholar] [CrossRef]
- An, D.; Chen, Z.; Zheng, J.; Chen, S.; Wang, L.; Huang, Z.; Weng, L. Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence. Food Chem. 2015, 168, 1–6. [Google Scholar] [CrossRef]
- Huang, H.; Tan, Y.; Shi, J.; Liang, G.; Zhu, J.J. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Nanoscale 2010, 2, 606. [Google Scholar] [CrossRef]
- Jie, G.; Yuan, J. Novel magnetic fe3o4@cdse composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Anal. Chem. 2012, 84, 2811–2817. [Google Scholar] [CrossRef]
- Jie, G.; Yuan, J.; Zhang, J. Quantum dots-based multifunctional dendritic superstructure for amplified electrochemiluminescence detection of atp. Biosens. Bioelectron. 2012, 31, 69–76. [Google Scholar] [CrossRef]
- Kadimisetty, K.; Mosa, I.M.; Malla, S.; Satterwhite-Warden, J.E.; Kuhns, T.M.; Faria, R.C.; Lee, N.H.; Rusling, J.F. 3d-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens. Bioelectron. 2016, 77, 188–193. [Google Scholar] [CrossRef]
- Kurita, R.; Arai, K.; Nakamoto, K.; Kato, D.; Niwa, O. Development of electrogenerated chemiluminescence-based enzyme linked immunosorbent assay for sub-pm detection. Anal. Chem. 2010, 82, 1692–1697. [Google Scholar] [CrossRef]
- Liu, P.Z.; Hu, X.W.; Mao, C.J.; Niu, H.L.; Song, J.M.; Jin, B.K.; Zhang, S.Y. Electrochemiluminescence immunosensor based on graphene oxide nanosheets/polyaniline nanowires/cdse quantum dots nanocomposites for ultrasensitive determination of human interleukin-6. Electrochim. Acta 2013, 113, 176–180. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, X.; Xing, D. A new kind of aptamer-based immunomagnetic electrochemiluminescence assay for quantitative detection of protein. Biosens. Bioelectron. 2010, 26, 285–288. [Google Scholar] [CrossRef]
- Cheng, M.; Zhou, J.; Zhou, X.; Xing, D. Peptide cleavage induced assembly enables highly sensitive electrochemiluminescence detection of protease activity. Sens. Actuators B Chem. 2018, 262, 516–521. [Google Scholar] [CrossRef]
- Yu, H.; Liu, W.; Zhou, X.; Xing, D. In Vitro Evaluation of CRISPR/Cas9 Function by an Electrochemiluminescent Assay. Anal. Chem. 2016, 88, 8369–8374. [Google Scholar]
- Zhou, X.; Duan, R.; Xing, D. Highly sensitive detection of protein and small molecules based on aptamer-modified electrochemiluminescence nanoprobe. Analyst 2012, 137, 1963–1969. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, X.; Xing, D. Ultrasensitive aptamer-based bio bar code immunomagnetic separation and electrochemiluminescence method for the detection of protein. Anal. Chim. Acta 2012, 725, 39–43. [Google Scholar] [CrossRef]
- Chen, A.; Ma, S.; Zhuo, Y.; Chai, Y.; Yuan, R. In situ Electrochemical Generation of Electrochemiluminescent Silver Naonoclusters on Target-cycling Synchronized Rolling Circle Amplification Platform for MicroRNA Detection. Anal. Chem. 2016, 88, 3203–3210. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Su, J.; Xiang, Y.; Yuan, R.; Chai, Y. In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection of DNA. Anal. Chem. 2012, 84, 7750–7755. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, W.; Wang, W.; Chen, Y.; Li, X. Amplification strategies using electrochemiluminescence biosensors for the detection of DNA, bioactive molecules and cancer biomarkers. TRAC Trends Anal. Chem. 2015, 65, 137–150. [Google Scholar] [CrossRef]
- Duan, R.; Zhou, X.; Xing, D. Electrochemiluminescence biobarcode method based on cysteamine--gold nanoparticle conjugates. Anal. Chem. 2010, 82, 3099–3103. [Google Scholar] [CrossRef]
- Feng, Q.M.; Guo, Y.H.; Xu, J.J.; Chen, H.Y. Self-assembled DNA tetrahedral scaffolds for the construction of electrochemiluminescence biosensor with programmable DNA cyclic amplification. ACS Appl. Mater. Interfaces 2017, 9, 17637–17644. [Google Scholar] [CrossRef]
- Li, F.; Yu, Y.; Li, Q.; Zhou, M.; Cui, H. A homogeneous signal-on strategy for the detection of rpob genes of mycobacterium tuberculosis based on electrochemiluminescent graphene oxide and ferrocene quenching. Anal. Chem. 2014, 86, 1608–1613. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Z.; Wu, X.; Chen, H.; Chai, Y.; Yuan, R. Highly efficient electrochemiluminescence resonance energy transfer system in one nanostructure: Its application for ultrasensitive detection of microrna in cancer cells. Anal. Chem. 2017, 89, 6029–6035. [Google Scholar] [CrossRef]
- Liao, Y.; Zhou, X.; Fu, Y.; Xing, D. Linear ru(bpy)3(2+)-polymer as a universal probe for sensitive detection of biomarkers with controllable electrochemiluminescence signal-amplifying ratio. Anal. Chem. 2017, 89, 13016–13023. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J.; Lu, J.; Liu, F.; Zhang, M.; Wang, S. Ultrasensitive electrochemiluminescence detection of lengthy DNA molecules based on dual signal amplification. Analyst 2013, 138, 3463–3469. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X.; Shen, J.; Xing, D. Sensitive detection of hg2+ with switchable electrochemiluminescence luminophore and disposable bipolar electrode. ChemElectroChem 2017, 4, 1681–1685. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, X.; Xing, D. Ultrasensitive and selective detection of mercury(ii) in aqueous solution by polymerase assisted fluorescence amplification. Biosens. Bioelectron. 2011, 26, 2666–2669. [Google Scholar] [CrossRef]
- Zhou, X.; Su, Q.; Xing, D. An electrochemiluminescent assay for high sensitive detection of mercury (ii) based on isothermal rolling circular amplification. Anal. Chim. Acta 2012, 713, 45–49. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X. Ultrasensitive electrochemiluminescence detection of mercury ions based on DNA oligonucleotides and cysteamine modified gold nanoparticles probes. Sens. Actuators B Chem. 2012, 171, 860–865. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Zhu, J.J. Recent advances in electrochemiluminescence analysis. Anal. Chem. 2017, 89, 358–371. [Google Scholar] [CrossRef]
- Sachdeva, A.; Singh, A.K.; Sharma, S.K. An electrochemiluminescence assay for the detection of bio threat agents in selected food matrices and in the screening of clostridium botulinum outbreak strains associated with type a botulism. J. Sci. Food Agric. 2014, 94, 707–712. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Electrochemiluminescence of tris (2,2’-bipyridyl) ruthenium and its applications in bioanalysis: A review. Luminescence 2011, 26, 77–85. [Google Scholar] [CrossRef]
- Chen, K.; Liu, J.; Shu, G.; Yang, Y.; Zhu, Y.; Zhao, G. Electrochemiluminescence of terbium (III) complex and its potential application for the determination of bacterial endospores. J. Lumin. 2013, 141, 71–75. [Google Scholar] [CrossRef]
- Fiaccabrino, G.C.; Koudelka-Hep, M.; Hsueh, Y.T.; Collins, S.D.; Smith, R.L. Electrochemiluminescence of tris(2,2’-bipyridine)ruthenium in water at carbon microelectrodes. Anal. Chem. 1998, 70, 4157–4161. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, D.; Liao, Y.; Liu, W.; Liu, H.; Ma, Z.; Xing, D. Synthesis, labeling and bioanalytical applications of a tris (2,2’-bipyridyl)ruthenium(II)-based electrochemiluminescence probe. Nat. Protoc. 2014, 9, 1146–1159. [Google Scholar] [CrossRef]
- Li, J.J.; Chu, Y.; Lee, B.Y.H.; Xie, X.S. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res. 2008, 36, e36. [Google Scholar] [CrossRef]
- Ignatyeva, D.O.; Knyazev, G.A.; Kapralov, P.O.; Dietler, G.; Sekatskii, S.K.; Belotelov, V.I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci. Rep. 2016, 6, 28077. [Google Scholar] [CrossRef]
- Hasib, M.H.H.; Nur, J.N.; Rizal, C.; Shushama, K.N. Improved transition metal dichalcogenides-based surface plasmon resonance biosensors. Condens. Matter. 2019, 4, 49. [Google Scholar] [CrossRef]
- Wu, M.S.; Yuan, D.J.; Xu, J.J.; Chen, H.Y. Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem. Sci. 2013, 4, 1182–1188. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Ma, Q. Recent advances in quantum dot-based electrochemiluminescence sensors. J. Mater. Chem. C 2018, 6, 942–959. [Google Scholar] [CrossRef]
- Fu, X.; Tan, X.; Yuan, R.; Chen, S. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-cdte quantum dots and self-enhanced ru(ii) complex. Biosens. Bioelectron. 2017, 90, 61–68. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, M.; Zhang, H.; Wen, W.; Zhang, X.; Wang, S. Enhanced electrochemiluminescence of rusi nanoparticles for ultrasensitive detection of ochratoxin a by energy transfer with cdte quantum dots. Biosens. Bioelectron. 2016, 79, 561–567. [Google Scholar] [CrossRef]
- Wu, F.F.; Zhou, Y.; Wang, J.X.; Zhuo, Y.; Yuan, R.; Chai, Y.Q. A novel electrochemiluminescence immunosensor based on Mn doped Ag2S quantum dots probe for laminin detection. Sens. Actuators B Chem. 2017, 243, 1067–1074. [Google Scholar] [CrossRef]
- Zhang, J.J.; Kang, T.F.; Hao, Y.C.; Lu, L.P.; Cheng, S.Y. Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystin-LR. Sens. Actuators B Chem. 2015, 214, 117–123. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Ma, Q.; Lin, Z.; Chen, S.; Li, Y.; Lu, L.; Qu, H.; Su, X. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles. Anal. Chim. Acta 2016, 916, 92–101. [Google Scholar] [CrossRef]
- Qiu, J.D.; Zhao, H.F.; Liang, R.P.; Wang, J.W. A dual-potential electrochemiluminescence ratiometric approach based on graphene quantum dots and luminol for highly sensitive detection of protein kinase activity. Chem. Commun. 2015, 51, 12669–12672. [Google Scholar] [Green Version]
- Jie, G.; Zhou, Q.; Jie, G. Graphene quantum dots-based electrochemiluminescence detection of DNA using multiple cycling amplification strategy. Talanta 2019, 194, 658–663. [Google Scholar] [CrossRef]
- Li, N.L.; Jia, L.P.; Ma, R.N.; Jia, W.L.; Lu, Y.Y.; Shi, S.S.; Wang, H.S. A novel sandwiched electrochemiluminescence immunosensor for the detection of carcinoembryonic antigen based on carbon quantum dots and signal amplification. Biosens. Bioelectron. 2017, 89, 453–460. [Google Scholar] [CrossRef]
- Nie, G.; Wang, Y.; Tang, Y.; Zhao, D.; Guo, Q. A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosens. Bioelectron. 2018, 101, 123–128. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Zhang, L.; Gao, J.; Ma, Q. Electrochemiluminescence Detection of Escherichia coli O157:H7 Based on a Novel Polydopamine Surface Imprinted Polymer Biosensor. ACS Appl. Mater. Interfaces 2017, 9, 5430–5436. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Wang, M.; Ma, Q. A visual electrochemiluminescence resonance energy transfer/surface plasmon coupled electrochemiluminescence nanosensor for Shiga toxin-producing Escherichia coli detection. Green Chem. 2018, 20, 5520–5527. [Google Scholar] [CrossRef]
- Zhou, X.; Xing, D.; Zhu, D.; Jia, L. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity. Anal. Chem. 2009, 81, 255–261. [Google Scholar] [CrossRef]
- Hao, N.; Wang, K. Recent development of electrochemiluminescence sensors for food analysis. Anal. Bioanal. Chem. 2016, 408, 7035–7048. [Google Scholar] [CrossRef]
- Yue, H.; He, Y.; Fan, E.; Wang, L.; Lu, S.; Fu, Z. Label-free electrochemiluminescent biosensor for rapid and sensitive detection of pseudomonas aeruginosa using phage as highly specific recognition agent. Biosens. Bioelectron. 2017, 94, 429–432. [Google Scholar] [CrossRef]
- Guo, Z.; Sha, Y.; Hu, Y.; Yu, Z.; Tao, Y.; Wu, Y.; Zeng, M.; Wang, S.; Li, X.; Zhou, J.; et al. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide. Anal. Bioanal. Chem. 2016, 408, 7203–7211. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Zhu, M.; Xing, D. Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Biosens. Bioelectron. 2017, 91, 238–245. [Google Scholar] [CrossRef]
- Hao, N.; Zhang, X.; Zhou, Z.; Hua, R.; Zhang, Y.; Liu, Q.; Qian, J.; Li, H.; Wang, K. AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosens. Bioelectron. 2017, 97, 377–383. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, X.; Xing, D. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology. Biosens. Bioelectron. 2011, 26, 2897–2904. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X. Paper-based bipolar electrode electrochemiluminescence (pBPE-ECL) analysis system for sensitive detection of pathogenic bacteria. Anal. Chem. 2016, 88, 10191–10197. [Google Scholar] [CrossRef]
- Cheng, L.W.; Stanker, L.H. Detection of botulinum neurotoxin serotypes a and b using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J. Agric. Food Chem. 2013, 61, 755–760. [Google Scholar] [CrossRef]
- Leach, K.M.; Stroot, J.M.; Lim, D.V. Same-day detection of escherichia coli o157:H7 from spinach by using electrochemiluminescent and cytometric bead array biosensors. Appl. Environ. Microbiol. 2010, 76, 8044–8052. [Google Scholar] [CrossRef]
- Spehar-Délèze, A.M.; Julich, S.; Gransee, R.; Tomaso, H.; Dulay, S.B.; O’Sullivan, C.K. Electrochemiluminescence (ecl) immunosensor for detection of francisella tularensis on screen-printed gold electrode array. Anal. Bioanal. Chem. 2016, 408, 7147–7153. [Google Scholar] [CrossRef]
- Yue, H.; Zhou, Y.; Wang, P.; Wang, X.; Wang, Z.; Wang, L.; Fu, Z. A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A. Talanta 2016, 153, 401–406. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, W.; Liu, H.; Liao, Y.; Wei, J.; Zhou, X.; Xing, D. Construction of Fe3O4 /Vancomycin/PEG Magnetic Nanocarrier for Highly Efficient Pathogen Enrichment and Gene Sensing. ACS Appl. Mater. Interfaces 2015, 7, 12873–12881. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Qi, H.; Gao, Q.; Zhang, C. Electrogenerated chemiluminescence biosensor incorporating ruthenium complex-labelled Concanavalin A as a probe for the detection of Escherichia coli. Biosens. Bioelectron. 2012, 35, 376–381. [Google Scholar] [CrossRef]
- Teng, J.; Yuan, F.; Ye, Y.; Zheng, L.; Yao, L.; Xue, F.; Chen, W.; Li, B. Aptamer-Based Technologies in Foodborne Pathogen Detection. Front. Microbiol. 2016, 7, 149. [Google Scholar] [CrossRef]
- Yu, M.; Wang, H.; Fu, F.; Li, L.; Li, J.; Li, G.; Song, Y.; Swihart, M.T.; Song, E. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin–Gold Nanoclusters and Aptamer–Gold Nanoparticles. Anal. Chem. 2017, 89, 4085–4090. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Liao, Z.; Sun, Y.; Cheng, Q.; Song, Y.; Song, E.; Tan, W. Magnetism-Resolved Separation and Fluorescence Quantification for Near-Simultaneous Detection of Multiple Pathogens. Anal. Chem. 2018, 90, 9621–9628. [Google Scholar] [CrossRef]
- Wang, K.; Liao, J.; Yang, X.; Zhao, M.; Chen, M.; Yao, W.; Tan, W.; Lan, X. A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens. Bioelectron. 2015, 63, 172–177. [Google Scholar] [CrossRef]
- Wang, H.M.; Fang, Y.; Yuan, P.X.; Wang, A.J.; Luo, X.L.; Feng, J.J. Construction of ultrasensitive label-free aptasensor for thrombin detection using palladium nanocones boosted electrochemiluminescence system. Electrochim. Acta 2019, 310, 195–202. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Yin, G.; Zhang, Q.; Luo, J.; Wu, N. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens. Bioelectron. 2017, 91, 687–691. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Liu, C.; Yin, G.; Luo, J.; Xu, Z. Application of DNA aptamers as sensing layers for detection of carbofuran by electrogenerated chemiluminescence energy transfer. Anal. Chim. Acta 2016, 941, 94–100. [Google Scholar] [CrossRef]
- Motaghi, H.; Ziyaee, S.; Mehrgardi, M.A.; Kajani, A.A.; Bordbar, A.K. Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel. Biosens. Bioelectron. 2018, 118, 217–223. [Google Scholar] [CrossRef]
- Leland, J.K.; Powell, M.J. Electrogenerated chemiluminescence: An oxidative-reduction type ECL reaction sequence using tripropylamine. J. Electrochem. Soc. 1990, 137, 3127–3131. [Google Scholar] [CrossRef]
- Oh, S.J.; Park, B.H.; Jung, J.H.; Choi, G.; Lee, D.C.; Seo, T.S. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens. Bioelectron. 2016, 75, 293–300. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, X.; Xing, D.; Wu, B. Rapid and sensitive detection of Vibrio parahaemolyticus in sea foods by electrochemiluminescence polymerase chain reaction method. Food Chem. 2010, 123, 852–858. [Google Scholar] [CrossRef]
- Zhan, F.; Zhou, X.; Xing, D. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction. Anal. Chim. Acta 2013, 761, 71–77. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, X.; Xing, D. Nano-magnetic primer based electrochemiluminescence-polymerase chain reaction (NMPE-PCR) assay. Biosens. Bioelectron. 2012, 31, 463–468. [Google Scholar] [CrossRef]
- Osterberg, F.W.; Rizzi, G.; Donolato, M.; Bejhed, R.S.; Mezger, A.; Strömberg, M.; Nilsson, M. On-chip detection of rolling circle amplified DNA molecules from bacillus globigii spores and vibrio cholerae. Small 2014, 10, 2877–2882. [Google Scholar] [CrossRef]
- Shi, D.; Huang, J.; Chuai, Z.; Chen, D.; Zhu, X.; Wang, H.; Peng, J.; Wu, H.; Huang, Q.; Fu, W. Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor. Biosens. Bioelectron. 2014, 62, 280–287. [Google Scholar] [CrossRef]
- Martin, A.; Grant, K.B.; Stressmann, F.; Ghigo, J.M.; Marchal, D.; Limoges, B. Ultimate single-copy DNA detection using real-time electrochemical LAMP. ACS Sens. 2016, 1, 904–912. [Google Scholar] [CrossRef]
- Li, Y.; Fan, P.; Zhou, S.; Zhang, L. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens. Microb. Pathog. 2017, 107, 54–61. [Google Scholar] [CrossRef]
- Clancy, E.; Coughlan, H.; Higgins, O.; Boo, T.W.; Cormican, M.; Barrett, L.; Smith, T.J.; Reddington, K.; Barry, T. Development of internally controlled duplex real-time NASBA diagnostics assays for the detection of microorganisms associated with bacterial meningitis. J. Microbiol. Methods 2016, 127, 197–202. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, D.; Cao, Y.; Ma, W.; Yu, Y.; Guo, M.; Xing, X. A novel universal signal amplification probe-based electrochemiluminescence assay for sensitive detection of pathogenic bacteria. Electrochem. Commun. 2017, 85, 11–14. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Y.; Cao, Y.; Zhu, D.; Ma, W.; Yu, Y.; Guo, M. Ultrasensitive electrochemiluminescence detection of Staphylococcus aureus via enzyme-free branched DNA signal amplification probe. Biosens. Bioelectron. 2018, 117, 830–837. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef]
- Li, B.; Zhou, X.; Liu, H.; Deng, H.; Huang, R.; Xing, D. Simultaneous detection of antibiotic resistance genes on paper-based chip using [ru(phen)2dppz](2+) turn-on fluorescence probe. ACS Appl. Mater. Interfaces 2018, 10, 4494–4501. [Google Scholar] [CrossRef]
- Wei, J.; Liu, H.; Liu, F.; Zhu, M.; Zhou, X.; Xing, D. Miniaturized Paper-Based Gene Sensor for Rapid and Sensitive Identification of Contagious Plant Virus. ACS Appl. Mater. Interfaces 2014, 6, 22577–22584. [Google Scholar] [CrossRef]
- Deng, H.; Zhou, X.; Liu, Q.; Li, B.; Liu, H.; Huang, R.; Xing, D. Paperfluidic Chip Device for Small RNA Extraction, Amplification, and Multiplexed Analysis. ACS Appl. Mater. Interfaces 2017, 9, 41151–41158. [Google Scholar] [CrossRef]
- Lui, C.; Cady, N.C.; Batt, C.A. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems. Sensors 2009, 9, 3713–3744. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Zhou, X.; Xing, D. Integrated paper-based detection chip with nucleic acid extraction and amplification for automatic and sensitive pathogen detection. Sens. Actuators B Chem. 2018, 261, 288–296. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, J.; Le, H.T.N.; Santhosh, M.; Kadam, A.N.; Cho, S. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens. Bioelectron. 2019, 126, 68–81. [Google Scholar] [CrossRef]
- Amiri, M.; Bezaatpour, A.; Jafari, H.; Boukherroub, R.; Szunerits, S. Electrochemical Methodologies for the Detection of Pathogens. ACS Sens. 2018, 3, 1069–1086. [Google Scholar] [CrossRef]
- Kuss, S.; Amin, H.M.A.; Compton, R.G.; Amin, H.M.A. Electrochemical Detection of Pathogenic Bacteria-Recent Strategies, Advances and Challenges. Chem. Asian J. 2018, 13, 2758–2769. [Google Scholar] [CrossRef]
- Ohkuchi, A.; Hirashima, C.; Suzuki, H.; Takahashi, K.; Yoshida, M.; Matsubara, S.; Suzuki, M. Evaluation of a new and automated electrochemiluminescence immunoassay for plasma sFlt-1 and PlGF levels in women with preeclampsia. Hypertens. Res. 2010, 33, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Kulasingam, V.; Jung, B.P.; Blasutig, I.M.; Baradaran, S.; Chan, M.K.; Aytekin, M.; Colantonio, D.A.; Adeli, K. Pediatric reference intervals for 28 chemistries and immunoassays on the Roche cobas® 6000 analyzer—A CALIPER pilot study. Clin. Biochem. 2010, 43, 1045–1050. [Google Scholar] [CrossRef]
- Giannitsis, E.; Kurz, K.; Hallermayer, K.; Jarausch, J.; Jaffe, A.S.; Katus, H.A. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin. Chem. 2010, 56, 2254–2261. [Google Scholar] [CrossRef]
- Gross, E.M.; Durant, H.E.; Hipp, K.N.; Lai, R.Y. Electrochemiluminescence detection in paper-based and other inexpensive microfluidic devices. ChemElectroChem 2017, 4, 1594–1603. [Google Scholar] [CrossRef]
- Ge, S.; Zhao, J.; Wang, S.; Lan, F.; Yan, M.; Yu, J. Ultrasensitive electrochemiluminescence assay of tumor cells and evaluation of H2O2 on a paper-based closed-bipolar electrode by in-situ hybridization chain reaction amplification. Biosens. Bioelectron. 2018, 102, 411–417. [Google Scholar] [CrossRef]
- Wang, J.; Tian, B.; Sahlin, E. Micromachined Electrophoresis Chips with Thick-Film Electrochemical Detectors. Anal. Chem. 1999, 71, 5436–5440. [Google Scholar] [CrossRef]
- Ge, L.; Yan, J.; Song, X.; Yan, M.; Ge, S.; Yu, J. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 2012, 33, 1024–1031. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Zhang, Y.; Yu, J.; Ge, S.; Yan, M. Graphene functionalized porous Au-paper based electrochemiluminescence device for detection of DNA using luminescent silver nanoparticles coated calcium carbonate/carboxymethyl chitosan hybrid microspheres as labels. Biosens. Bioelectron. 2014, 59, 307–313. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, C.; Xing, D. Paper-based bipolar electrode-electrochemiluminescence (BPE-ECL) device with battery energy supply and smartphone read-out: A handheld ECL system for biochemical analysis at the point-of-care level. Sens. Actuators B Chem. 2016, 237, 308–317. [Google Scholar] [CrossRef]
- Arora, A.; Eijkel, J.C.T.; Morf, W.E. A Wireless Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device. Anal. Chem. 2001, 73, 5633. [Google Scholar] [CrossRef]
- Feng, Q.; Chen, H.; Xu, J. Disposable paper-based bipolar electrode array for multiplexed electrochemiluminescence detection of pathogenic DNAs. Sci. China Chem. 2015, 58, 810–818. [Google Scholar] [CrossRef]
- Hartshorn, R.M.; Barton, J.K. Novel dipyridophenazine complexes of ruthenium (II): Exploring luminescent reporters of DNA. J. Am. Chem. Soc. 1992, 114, 5919–5925. [Google Scholar] [CrossRef]
Methods | Mechanism | Features | Limits of Detection | Detection Ranges | References |
---|---|---|---|---|---|
Antibody-based ECL sensors | Antibody based specific recognition of target and ECL signal probes. |
| 1 CFU/mL | 1~4 × 108 CFU/mL | [63] |
Antibiotic- or lectin-based ECL sensors | Antibiotic/lectin-modified magnetic beads capture and enrich the target pathogen, thereby attaching the ECL probe. |
| 10 CFU/mL | 10~104 CFU/mL | [64] |
Aptamer-based ECL sensors | The modified aptamer specifically captures the target pathogen onto the surface of the electrode. |
| 0.17 CFU/mL | 0.5 to 500 CFU/mL | [65] |
Isothermal amplification-based detection | Isothermally amplify the characteristic gene of the target pathogen, then link the signal molecules/probes to the amplification products. |
| 0.2 pg/μL genomic DNA | 0.2 pg/μL~2 ng/μL | [66] |
pBPE for pathogen detection | When a direct current voltage applied to the driving electrode, a potential difference is generated across the BPE, and oxidation reaction and reduction reaction can occur at each end of the BPE, respectively. |
| 10 copies/μL | 10~106 copies/μL | [67] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Zhou, T.; Huang, R. Recent Advances in Electrochemiluminescence Sensors for Pathogenic Bacteria Detection. Micromachines 2019, 10, 532. https://doi.org/10.3390/mi10080532
Shen J, Zhou T, Huang R. Recent Advances in Electrochemiluminescence Sensors for Pathogenic Bacteria Detection. Micromachines. 2019; 10(8):532. https://doi.org/10.3390/mi10080532
Chicago/Turabian StyleShen, Jinjin, Ting Zhou, and Ru Huang. 2019. "Recent Advances in Electrochemiluminescence Sensors for Pathogenic Bacteria Detection" Micromachines 10, no. 8: 532. https://doi.org/10.3390/mi10080532
APA StyleShen, J., Zhou, T., & Huang, R. (2019). Recent Advances in Electrochemiluminescence Sensors for Pathogenic Bacteria Detection. Micromachines, 10(8), 532. https://doi.org/10.3390/mi10080532