Editorial for the Special Issue on Emerging Memory and Computing Devices in the Era of Intelligent Machines
Conflicts of Interest
References
- Khalili Amiri, P.; Wang, K. Voltage-Controlled Magnetic Anisotropy in Spintronic Devices. Spin 2012, 2, 1240002. [Google Scholar] [CrossRef] [Green Version]
- Nozaki, T.; Yamamoto, T.; Miwa, S.; Tsujikawa, M.; Shirai, M.; Yuasa, S.; Suzuki, Y. Recent Progress in the Voltage-Controlled Magnetic Anisotropy Effect and the Challenges Faced in Developing Voltage-Torque MRAM. Micromachines 2019, 10, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Yim, Y. Fine-Grained Power Gating Using an MRAM-CMOS Non-Volatile Flip-Flop. Micromachines 2019, 10, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, X.; Shen, X.; Lu, L.; He, N.; Wan, X.; Samanta, S.; Tong, Y. Resistance Switching Statistics and Mechanisms of Pt Dispersed Silicon Oxide-Based Memristors. Micromachines 2019, 10, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Qi, Y.; Mitrovic, I.Z.; Zhao, C.; Hall, S.; Yang, L.; Luo, T.; Huang, Y.; Zhao, C. Effect of Annealing Temperature for Ni/AlOx/Pt RRAM Devices Fabricated with Solution-Based Dielectric. Micromachines 2019, 10, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Li, X.; Chen, H.; Li, Y.; Liu, Y.; Wang, Q.; Ren, K.; Song, Z. Speeding Up the Write Operation for Multi-Level Cell Phase Change Memory with Programmable Ramp-Down Current Pulses. Micromachines 2019, 10, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, K.; Lu, T.; Majumdar, M.K.H.; Campbell, K.A. Comparison of the Electrical Response of Cu and Ag Ion-Conducting SDC Memristors Over the Temperature Range 6 K to 300 K. Micromachines 2019, 10, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.K.; Jeon, J.W.; Park, E.-S.; Yoo, C.; Kim, W.; Ha, M.; Hwang, C.S. Matrix Mapping on Crossbar Memory Arrays with Resistive Interconnects and Its Use in In-Memory Compression of Biosignals. Micromachines 2019, 10, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.; Sun, W.; Kim, B.; Kim, S.; Park, J.; Shin, H. Memristor Neural Network Training with Clock Synchronous Neuromorphic System. Micromachines 2019, 10, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, S.N. Compensating Circuit to Reduce the Impact of Wire Resistance in a Memristor Crossbar-Based Perceptron Neural Network. Micromachines 2019, 10, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, X.; Wang, C.; Liu, W.; Lv, H.; Wang, M.; Zeng, X. A RISC-V Processor with Area-Efficient Memristor-Based In-Memory Computing for Hash Algorithm in Blockchain Applications. Micromachines 2019, 10, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, G.; Turvani, G.; Graziano, M. New Logic-In-Memory Paradigms: An Architectural and Technological Perspective. Micromachines 2019, 10, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, S.A.; Cho, K.; Bahn, H. Tight Evaluation of Real-Time Task Schedulability for Processor’s DVS and Nonvolatile Memory Allocation. Micromachines 2019, 10, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.H.; Chung, E.-Y. In-DRAM Cache Management for Low Latency and Low Power 3D-Stacked DRAMs. Micromachines 2019, 10, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-D.; Jung, J.-K.; Lim, J.-G.; Park, S.-G.; Lee, H.-D.; Lee, G.-W. Investigation of Intra-Nitride Charge Migration Suppression in SONOS Flash Memory. Micromachines 2019, 10, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbiah, A.; Ogunfunmi, T. A Flexible Hybrid BCH Decoder for Modern NAND Flash Memories Using General Purpose Graphical Processing Units (GPGPUs). Micromachines 2019, 10, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yantir, H.E.; Guo, W.; Eltawil, A.M.; Kurdahi, F.J.; Salama, K.N. An Ultra-Area-Efficient 1024-Point In-Memory FFT Processor. Micromachines 2019, 10, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, L.-R.; Wang, Y.-R.; Chen, L.; Zhu, H.; Sun, Q.-Q. A Floating Gate Memory with U-Shape Recessed Channel for Neuromorphic Computing and MCU Applications. Micromachines 2019, 10, 558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.; Lee, T.; Choi, J.-W. Development of Bioelectronic Devices Using Bionanohybrid Materials for Biocomputation System. Micromachines 2019, 10, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri, P.K. Editorial for the Special Issue on Emerging Memory and Computing Devices in the Era of Intelligent Machines. Micromachines 2020, 11, 73. https://doi.org/10.3390/mi11010073
Amiri PK. Editorial for the Special Issue on Emerging Memory and Computing Devices in the Era of Intelligent Machines. Micromachines. 2020; 11(1):73. https://doi.org/10.3390/mi11010073
Chicago/Turabian StyleAmiri, Pedram Khalili. 2020. "Editorial for the Special Issue on Emerging Memory and Computing Devices in the Era of Intelligent Machines" Micromachines 11, no. 1: 73. https://doi.org/10.3390/mi11010073
APA StyleAmiri, P. K. (2020). Editorial for the Special Issue on Emerging Memory and Computing Devices in the Era of Intelligent Machines. Micromachines, 11(1), 73. https://doi.org/10.3390/mi11010073