Improved Stability and Controllability in ZrN-Based Resistive Memory Device by Inserting TiO2 Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hickmott, T.W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 1962, 33, 2669–2682. [Google Scholar] [CrossRef]
- Chua, L.O. Memristor—The Missing Circuit Element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Choi, J.; Van Le, Q.; Hong, K.; Moon, C.W.; Han, J.S.; Kwon, K.C.; Cha, P.R.; Kwon, Y.; Kim, S.Y.; Jang, H.W. Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius. ACS Appl. Mater. Interfaces 2017, 9, 30764–30771. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.X.; Xu, H.Y.; Wang, Z.Q.; Zhao, X.N.; Liu, W.Z.; Ma, J.G.; Liu, Y.C. Improved performance of Ta2O5-x resistive switching memory by Gd-doping: Ultralow power operation, good data retention, and multilevel storage. Appl. Phys. Lett. 2017, 111, 223505. [Google Scholar] [CrossRef]
- Lee, D.K.; Kim, M.H.; Bang, S.H.; Kim, T.H.; Kim, S.; Cho, S.; Park, B.G. Multilevel Switching Characteristics of Si3N4-Based Nano-Wedge Resistive Switching Memory and Array Simulation for In-Memory Computing Application. Electronics 2020, 9, 1228. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.H.; Cho, S.; Park, B.G. Resistive switching characteristics of Si3N4-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications. Appl. Phys. Lett. 2015, 106, 212106. [Google Scholar] [CrossRef]
- Hwang, B.; Lee, J.S. Lead-free, air-stable hybrid organic-inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage. Nanoscale 2018, 10, 8578–8584. [Google Scholar] [CrossRef]
- Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A.L. Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 2009, 56, 193–200. [Google Scholar] [CrossRef]
- Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal-oxide RRAM. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, C.; Szot, K. Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Schindler, C.; Staikov, G.; Waser, R. Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 2009. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.; Jo, S.H.; Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 2011, 5, 7669–7676. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H.; Hwang, S.; Kim, M.H.; Chang, Y.F.; Park, B.G. Analog Synaptic Behavior of a Silicon Nitride Memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, Q.C.; Guo, H.W.; Gao, L.G.; Xia, Y.D.; Yin, J.; Liu, Z.G. Monte Carlo simulation of the percolation in Ag30Ge15Se53 amorphous electrolyte films. Appl. Phys. Lett. 2009, 95, 242106. [Google Scholar] [CrossRef]
- Matveyev, Y.; Egorov, K.; Markeev, A.; Zenkevich, A. Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices. J. Appl. Phys. 2015, 117, 044901. [Google Scholar] [CrossRef]
- Yu, J.; Xu, X.; Gong, T.; Luo, Q.; Dong, D.; Yuan, P.; Tai, L.; Yin, J.; Zhu, X.; Wu, X.; et al. Suppression of filament overgrowth in conductive bridge random access memory by Ta2O5/TaOx Bi-layer structure. Nanoscale Res. Lett. 2019, 14, 111. [Google Scholar] [CrossRef] [Green Version]
- Gong, T.; Luo, Q.; Xu, X.; Yuan, P.; Ma, H.; Chen, C.; Liu, Q.; Long, S.; Lv, H.; Liu, M. Uniformity and Retention Improvement of TaOx-Based Conductive Bridge Random Access Memory by CuSiN Interfacial Layer Engineering. IEEE Electron Device Lett. 2017, 38, 1232–1235. [Google Scholar] [CrossRef]
- Kim, S.; Park, B.G. Nonlinear and multilevel resistive switching memory in Ni/Si3N4/Al2O3/TiN structures. Appl. Phys. Lett. 2016, 108, 212103. [Google Scholar] [CrossRef]
- Kim, S.; Chang, Y.F.; Kim, M.H.; Park, B.G. Improved resistive switching characteristics in Ni/SiNx/p++-Si devices by tuning x. Appl. Phys. Lett. 2017, 111, 033509. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.H.; Chen, Y.C.; Chang, Y.F.; Ryoo, K.C.; Cho, S.; Lee, J.H.; Park, B.G. Scaling Effect on Silicon Nitride Memristor with Highly Doped Si Substrate. Small 2018, 14, 1704062. [Google Scholar] [CrossRef] [PubMed]
- Tikhov, S.V.; Mikhaylov, A.N.; Belov, A.I.; Korolev, D.S.; Antonov, I.N.; Karzanov, V.V.; Gorshkov, O.N.; Tetelbaum, D.I.; Karakolis, P.; Dimitrakis, P. Role of highly doped Si substrate in bipolar resistive switching of silicon nitride MIS-capacitors. Microelectron. Eng. 2018, 187–188, 134–138. [Google Scholar] [CrossRef]
- Kumar, D.; Chand, U.; Siang, L.W.; Tseng, T.Y. ZrN-Based Flexible Resistive Switching Memory. IEEE Electron Device Lett. 2020, 41, 705–708. [Google Scholar] [CrossRef]
- Kim, H.D.; Yun, M.J.; Kim, K.H.; Kim, S. Oxygen-doped zirconium nitride based transparent resistive random access memory devices fabricated by radio frequency sputtering method. J. Alloys Compd. 2016, 675, 183–186. [Google Scholar] [CrossRef]
- Kim, H.D.; An, H.M.; Seo, Y.; Kim, T.G. Transparent resistive switching memory using ITO/AlN/ITO capacitors. IEEE Electron Device Lett. 2011, 32, 1125–1127. [Google Scholar] [CrossRef]
- Lin, C.C.; Liou, H.Y.; Chu, S.Y.; Huang, C.Y.; Hong, C.S. Diverse resistive switching behaviors of AlN thin films with different orientations. CrystEngComm 2018, 20, 6230–6235. [Google Scholar] [CrossRef]
- Jeon, Y.R.; Abbas, Y.; Sokolov, A.S.; Kim, S.; Ku, B.; Choi, C. Study of in situ silver migration in amorphous boron nitride CBRAM device. ACS Appl. Mater. Interfaces 2019, 26, 23329–23336. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Selvaganesh, S.V.; Bhat, S.D. Enhanced catalytic activity and stability of copper and nitrogen doped titania nanorod supported Pt electrocatalyst for oxygen reduction reaction in polymer electrolyte fuel cells. New J. Chem. 2017, 41, 13012–13026. [Google Scholar] [CrossRef]
- Yan, L.; Chen, G.; Tan, S.; Zhou, M.; Zou, G.; Deng, S.; Smirnov, S.; Luo, H. Titanium Oxynitride Nanoparticles Anchored on Carbon Nanotubes as Energy Storage Materials. ACS Appl. Mater. Interfaces 2015, 7, 24212–24217. [Google Scholar] [CrossRef] [PubMed]
- Shaik, M.R.; Alam, M.; Adil, S.F.; Kuniyil, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Tahir, M.N.; Labis, J.P.; Khan, M. Solvothermal preparation and electrochemical characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based nanocomposites. Materials 2019, 12, 711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, H.; Ishii, H.; Kato, D.; Kawashima, S.; Kodama, K.; Furusawa, M.; Tanaka, M.; Sekiya, T. Deposition of ZrON thin films by reactive magnetron sputtering using a hollow cylindrical target. J. Vac. Sci. Technol. A 2018, 36, 061509. [Google Scholar] [CrossRef]
- Xu, J.; Xu, S.; Munroe, P.; Xie, Z.H. A ZrN nanocrystalline coating for polymer electrolyte membrane fuel cell metallic bipolar plates prepared by reactive sputter deposition. RSC Adv. 2015, 5, 67348–67356. [Google Scholar] [CrossRef]
- Bahuleyan, B.K.; Toussaint, K.; Rinnert, H.; Vallon, R.; Molinari, M.; Chuburu, F.; Cadiou, C. Silicon wafer functionalization with a luminescent Tb(III) coordination complex: Synthesis, characterization, and application to the optical detection of NO in the gas phase. Molecules 2019, 24, 1914. [Google Scholar] [CrossRef] [Green Version]
- Park, W.Y.; Ju, W.; Ko, Y.S.; Kim, S.G.; Ha, T.J.; Lee, J.Y.; Park, Y.T.; Kim, K.W.; Lee, J.C.; Lee, J.H.; et al. Improvement of sensing margin and reset switching fail of RRAM. Solid. State. Electron. 2019, 156, 87–91. [Google Scholar] [CrossRef]
- Maikap, S.; Banergee, W. In Quest of Nonfilamentary Switching: A Synergistic Approach of Dual Nanostructure Engineering to Improve the Variability and Reliability of Resistive Random-Access-Memory Devices. Adv. Electron. Mater. 2020, 6, 2000209. [Google Scholar] [CrossRef]
- Mahata, C.; Lee, C.; An, Y.; Kim, M.-H.; Bang, S.; Kim, C.S.; Ryu, J.; Kim, S.; Kim, H.; Park, B.-G. Resistive switching and synaptic behavior of an HfO2/Al2O3 stack on ITO for neuromorphic systems. J. Alloys Comp. 2020, 826, 154434. [Google Scholar] [CrossRef]
- Lee, J.; Ryu, J.-H.; Kim, B.; Hussain, F.; Mahata, C.; Sim, E.; Ismail, M.; Abbas, Y.; Abbas, H.; Lee, D.K.; et al. Synaptic Characteristics of Amorphous Boron Nitride-Based Memristors on a Highly Doped Silicon Substrate for Neuromorphic Engineering. ACS Appl. Mater. Interfaces 2020, 12, 33908–33916. [Google Scholar] [CrossRef]
- Senapati, A.; Roy, S.; Lin, Y.F.; Dutta, M.; Maikap, S. Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM. Electronics 2020, 9, 1106. [Google Scholar] [CrossRef]
- Li, D.; Ilyas, N.; Li, C.; Jiang, X.; Jiang, Y.; Li, W. Synaptic learning and memory functions in SiO2: Ag/TiO2 based memristor devices. J. Phys. D Appl. Phys. 2020, 53, 175102. [Google Scholar] [CrossRef]
- Lu, Y.-F.; Li, Y.; Li, H.; Wan, T.-Q.; Huang, X.; He, Y.-H.; Miao, X. Low-Power Artificial Neurons Based on Ag/TiN/HfAlOx/Pt Threshold Switching Memristor for Neuromorphic Computing. IEEE Electron. Device Lett. 2020, 41, 1245–1248. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Kim, S. Improved Stability and Controllability in ZrN-Based Resistive Memory Device by Inserting TiO2 Layer. Micromachines 2020, 11, 905. https://doi.org/10.3390/mi11100905
Choi J, Kim S. Improved Stability and Controllability in ZrN-Based Resistive Memory Device by Inserting TiO2 Layer. Micromachines. 2020; 11(10):905. https://doi.org/10.3390/mi11100905
Chicago/Turabian StyleChoi, Junhyeok, and Sungjun Kim. 2020. "Improved Stability and Controllability in ZrN-Based Resistive Memory Device by Inserting TiO2 Layer" Micromachines 11, no. 10: 905. https://doi.org/10.3390/mi11100905
APA StyleChoi, J., & Kim, S. (2020). Improved Stability and Controllability in ZrN-Based Resistive Memory Device by Inserting TiO2 Layer. Micromachines, 11(10), 905. https://doi.org/10.3390/mi11100905