Simple and Efficient AlN-Based Piezoelectric Energy Harvesters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chip Design and Fabrication
2.2. X-Ray Characterization
2.3. Finite Element Simulation
3. Results and Discussion
3.1. Laser Interferometer Characterization
3.2. Vibrational Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.C.; Zhong, J.W.; Lee, C.; Lee, S.W.; Lin, L.W. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.; Paul, B.; Eklund, P. Flexible thermoelectric materials and devices. Appl. Mater. Today 2018, 12, 366–388. [Google Scholar] [CrossRef]
- Toshiyoshi, H.; Ju, S.; Honma, H.; Ji, C.H.; Fujita, H. MEMS vibrational energy harvesters. Sci. Technol. Adv. Mater. 2019, 20, 124–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meninger, S.; Mur-Miranda, J.O.; Amirtharajah, R.; Chandrakasan, A.; Lang, J.H. Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2001, 9, 64–76. [Google Scholar] [CrossRef]
- Tian, W.C.; Ling, Z.Y.; Yu, W.B.; Shi, J. A Review of MEMS Scale Piezoelectric Energy Harvester. Appl. Sci. 2018, 8, 645. [Google Scholar] [CrossRef] [Green Version]
- Todaro, M.T.; Guido, F.; Mastronardi, V.; Desmaele, D.; Epifani, G.; Algieri, L.; De Vittorio, M. Piezoelectric MEMS vibrational energy harvesters: Advances and outlook. Microelectron. Eng. 2017, 183, 23–36. [Google Scholar] [CrossRef]
- Wang, P.H.; Du, H.J. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Rev. Sci. Instrum. 2015, 86, 075002. [Google Scholar] [CrossRef]
- Tian, Y.W.; Li, G.M.; Yi, Z.R.; Liu, J.Q.; Yang, B. A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J. Phys. Chem. Solids 2018, 117, 21–27. [Google Scholar] [CrossRef]
- Yeo, H.G.; Ma, X.K.; Rahn, C.; Trolier-McKinstry, S. Efficient Piezoelectric Energy Harvesters Utilizing (001) Textured Bimorph PZT Films on Flexible Metal Foils. Adv. Funct. Mater. 2016, 26, 5940–5946. [Google Scholar] [CrossRef]
- Toprak, A.; Tigli, O. MEMS Scale PVDF-TrFE-Based Piezoelectric Energy Harvesters. J. Microelectromech. Syst. 2015, 24, 1989–1997. [Google Scholar] [CrossRef]
- Fei, C.; Liu, X.; Zhu, B.; Li, D.; Yang, X.; Yang, Y.; Zhou, Q. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy 2018, 51, 146–161. [Google Scholar] [CrossRef]
- Conrad, H.; Schmidt, J.U.; Pufe, W.; Zimmer, F.; Sandner, T.; Schenk, H.; Lakner, H. Aluminum Nitride—A promising and Full CMOS Compatible Piezoelectric Material for MOEMS Applications. Proc. SPIE 2009, 7362, 73620J. [Google Scholar]
- Doll, J.C.; Petzold, B.C.; Ninan, B.; Mullapudi, R.; Pruitt, B.L. Aluminum nitride on titanium for CMOS compatible piezoelectric transducers. J. Micromech. Microeng. 2009, 20, 025008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.Q.; Shang, Z.G.; Luo, G.X.; Deng, L.C. A vibration energy harvester using AlN piezoelectric cantilever array. Microelectron. Eng. 2015, 142, 47–51. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Hadas, Z.; Smilek, J. Efficiency of vibration energy harvesting systems: Technology, Components and System Design. In Energy Harvesting for Wireless Sensor Networks; Kanoun, O., Ed.; De Gruyter: Berlin, Germany, 2018; pp. 45–64. [Google Scholar]
- Ahrberg, C.D.; Ilic, B.R.; Manz, A.; Neuzil, P. Handheld real-time PCR device. Lab Chip 2016, 16, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Gablech, I.; Caha, O.; Svatos, V.; Pekarek, J.; Neuzil, P.; Sikola, T. Stress-free deposition of [001] preferentially oriented titanium thin film by Kaufman ion-beam source. Thin Solid Films 2017, 638, 57–62. [Google Scholar] [CrossRef]
- Gablech, I.; Svatos, V.; Caha, O.; Hrabovsky, M.; Prasek, J.; Hubalek, J.; Sikola, T. Preparation of (001) preferentially oriented titanium thin films by ion-beam sputtering deposition on thermal silicon dioxide. J. Mater. Sci. 2016, 51, 3329–3336. [Google Scholar] [CrossRef]
- Gablech, I.; Svatoš, V.; Caha, O.; Dubroka, A.; Pekárek, J.; Klempa, J.; Neužil, P.; Schneider, M.; Šikola, T. Preparation of high-quality stress-free (001) aluminum nitride thin film using a dual Kaufman ion-beam source setup. Thin Solid Films 2019, 670, 105–112. [Google Scholar] [CrossRef]
- Mallik, P.K.S.; Rao, D.S. Vibration control on composite beams with multiple piezoelectric patches using finite element analysis. Int. Res. J. Eng. Technol. 2017, 4, 6. [Google Scholar]
- Kunz, J.; Fialka, J.; Benes, P.; Havranek, Z. An Automated measurement system for measuring an overall power efficiency and a characterisation of piezo harvesters. J. Phys. Conf. Ser. 2018, 1065, 202008. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0470682548. [Google Scholar]
- Minh, L.V.; Kuwano, H. Highly Efficient Piezoelectric Micro-Energy Harvesters with Aln Thin Films Grown Directly on Flexible Ti Foils. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 833–836. [Google Scholar]
- Nabavi, S.; Zhang, L.H. Nonlinear Multi-Mode Wideband Piezoelectric MEMS Vibration Energy Harvester. IEEE Sens. J. 2019, 19, 4837–4848. [Google Scholar] [CrossRef]
- Iannacci, J.; Sordo, G.; Schneider, M.; Schmid, U.; Camarda, A.; Romani, A. A Novel Toggle-Type MEMS Vibration Energy Harvester for Internet of Things Applications. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar]
- He, X.M.; Wen, Q.; Lu, Z.; Shang, Z.G.; Wen, Z.Y. A micro-electromechanical systems based vibration energy harvester with aluminum nitride piezoelectric thin film deposited by pulsed direct-current magnetron sputtering. Appl. Energy 2018, 228, 881–890. [Google Scholar] [CrossRef]
- Jia, Y.; Seshia, A.A. Power Optimization by Mass Tuning for MEMS Piezoelectric Cantilever Vibration Energy Harvesting. J. Microelectromech. Syst. 2016, 25, 108–117. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gablech, I.; Klempa, J.; Pekárek, J.; Vyroubal, P.; Hrabina, J.; Holá, M.; Kunz, J.; Brodský, J.; Neužil, P. Simple and Efficient AlN-Based Piezoelectric Energy Harvesters. Micromachines 2020, 11, 143. https://doi.org/10.3390/mi11020143
Gablech I, Klempa J, Pekárek J, Vyroubal P, Hrabina J, Holá M, Kunz J, Brodský J, Neužil P. Simple and Efficient AlN-Based Piezoelectric Energy Harvesters. Micromachines. 2020; 11(2):143. https://doi.org/10.3390/mi11020143
Chicago/Turabian StyleGablech, Imrich, Jaroslav Klempa, Jan Pekárek, Petr Vyroubal, Jan Hrabina, Miroslava Holá, Jan Kunz, Jan Brodský, and Pavel Neužil. 2020. "Simple and Efficient AlN-Based Piezoelectric Energy Harvesters" Micromachines 11, no. 2: 143. https://doi.org/10.3390/mi11020143
APA StyleGablech, I., Klempa, J., Pekárek, J., Vyroubal, P., Hrabina, J., Holá, M., Kunz, J., Brodský, J., & Neužil, P. (2020). Simple and Efficient AlN-Based Piezoelectric Energy Harvesters. Micromachines, 11(2), 143. https://doi.org/10.3390/mi11020143