Measurement of the Imaginary Part of the Clausius-Mossotti Factor of Particle/Cell via Dual Frequency Electrorotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device
2.2. Theory
2.3. Experimental
3. Results and Discussion
3.1. Calculation of the Dielectrophoretic Forces and Torque in the ER Chamber
3.2. Experiment on the Imaginary Part of the Clausius-Mossotti Factor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pohl, H.A. Dielectrophoresis; Cambridge University Press: Cambridge, UK, 1978; ISBN 0521216575. [Google Scholar]
- Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 1995; ISBN 0-521-43196-4. [Google Scholar]
- Hughes, M.P. Nanoelectromechanics in Engineering and Biology; CRC Press: Boca Raton, FL, USA, 2002; ISBN 0-8493-1183-7. [Google Scholar]
- Pethig, R. Dielectrophoresis: Theory, Methodology and Biological Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 9781118671412. [Google Scholar]
- Lo, Y.J.; Lin, Y.Y.; Lei, U.; Wu, M.S.; Yang, P.C. Measurement of the Clausius-Mossotti factor of generalized dielectrophoresis. Appl. Phys. Lett. 2014, 104, 083701. [Google Scholar] [CrossRef]
- Lei, U.; Lo, Y.J. Review of the theory of generalised dielectrophoresis. IET Nanobiotechnol. 2011, 5, 86–106. [Google Scholar] [CrossRef] [PubMed]
- Reichle, C.; Müller, T.; Schnelle, T.; Fuhr, G. Electro-rotation in octopole micro cages. J. Phys. D Appl. Phys. 1999, 32, 2128–2135. [Google Scholar] [CrossRef]
- Müller, T.; Gradl, G.; Howitz, S.; Shirley, S.; Schnelle, T.; Fuhr, D. A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron. 1999, 14, 247–256. [Google Scholar] [CrossRef]
- Schnelle, T.; Müller, T.; Reichle, C.; Fuhr, F. Combined dielectrophoretic field cages and laser tweezers for electrorotation. Appl. Phys. B 2000, 70, 267–274. [Google Scholar] [CrossRef]
- Lo, Y.J.; Lei, U.; Chen, K.Y.; Lin, Y.Y.; Huang, C.C.; Wu, M.S.; Yang, P.C. Derivation of the cell dielectric properties based on Clausius-Mossotti factor. Appl. Phys. Lett. 2014, 104, 113702. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Lei, U.; Lo, Y.-J.; Wu, M.-S.; Yang, P.-C. A modified travelling wave dielectrophoretic method for the measurement of the imaginary part of the Clausius-Mossotti factor using dual frequency operation. J. Mech. 2014, 30, 651–660. [Google Scholar] [CrossRef]
- Morgan, H.; Izquierdo, A.G.; Badewell, D.; Green, N.G.; Ramos, A. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: Analytical solution using Fourier series. J. Phys. D 2001, 34, 1553–1561. [Google Scholar] [CrossRef]
- Pethig, R.; Talary, M.S.; Lee, R.S. Enhancing traveling-wave dielectrophoresis with signal superposition. IEEE Eng. Med. Bio. Mag. 2003, 22, 43–50. [Google Scholar] [CrossRef]
- Rohani, A.; Varhue, W.; Su, Y.-H.; Swami, N.S. Electrical tweezer for highly parallelized electrorotation measurements over a wide frequency bandwidth. Electrophoresis 2014, 35, 1795–1802. [Google Scholar] [CrossRef]
- Urdaneta, M.; Smela, E. Multiple frequency dielectrophoresis. Electrophoresis 2007, 28, 3145–3155. [Google Scholar] [CrossRef] [PubMed]
- Arnold, W.M.; Zimmerman, U. Electro-rotation: Development of a technique for dielectric measurements on individual cells and particles. J. Electrostat. 1988, 21, 151–191. [Google Scholar] [CrossRef]
- Becker, F.F.; Wang, X.-B.; Huang, Y.; Pethig, R.; Vykoukal, J.; Gascoyne, R.R.C. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA 1995, 92, 860–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, K.L.; Morgan, H.; Morgan, E.; Cameron, I.T.; Thomas, M.R. Measurement of the dielectric properties of peripheral blood mononuclear cells and trophoblast cells using AC electrokinetic techniques. Biochim. Biophys. Acta 2000, 1500, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Gimsa, J.; Müller, T.; Schnelle, T.; Fuhr, G. Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: Dispersion of the cytoplasm. Biophys. J. 1996, 71, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Hölzel, R.; Pethig, R.; Wang, X.-B. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys. Med. Biol. 1992, 37, 1499–1517. [Google Scholar] [CrossRef]
- Wang, X.-B.; Huang, Y.; Gascoyne, P.R.C.; Becker, F.F.; Hölzel, R.; Pethig, R. Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation. Biochim. Biophys. Acta 1994, 1193, 330–344. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Wang, X.; Wang, X.B.; Becker, F.F.; Gascoyne, P.R.C. Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys. J. 1999, 76, 3307–3314. [Google Scholar] [CrossRef] [Green Version]
- Gascoyne, P.R.C.; Becker, F.F.; Wang, X.-B. Numerical analysis of the influence of experimental conditions on the accuracy of dielectric parameters derived from electrorotation measurements. Bioelectrochem. Bioenerg. 1995, 36, 115–125. [Google Scholar] [CrossRef]
- Ino, K.; Ishida, A.; Inoue, K.Y.; Suzuki, M.; Koide, M.; Yasukawa, T.; Shiku, H.; Matsue, T. Electrorotation chip consisting of three-dimensional interdigitated array electrodes. Sens. Actuators B 2011, 153, 468–473. [Google Scholar] [CrossRef]
- Acrenequi, J.L.; Romas, A.; García-Sánchez, P.; Morgan, H. Electrorotation of titanium microsphere. Electrophoresis 2013, 34, 979–986. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, L.; Romas, A. García-Sánchez, P. Electrorotation of semiconducting microspheres. Phys. Rev. E 2019, 100, 042616. [Google Scholar] [CrossRef] [PubMed]
- Israelachvilli, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic: London, UK, 2011; ISBN 978-0-12-375182-9. [Google Scholar]
- Honegger, T.; Berton, K.; Picard, E.; Peyrade, D. Determination of Clausius–Mossotti factors and surface capacitances for colloidal particles. Appl. Phys. Lett. 2011, 98, 181906. [Google Scholar] [CrossRef]
- Honegger, T.; Peyrade, D. Dielectrophoretic properties of engineered protein patterned colloidal particles. Biomicrofluidics 2012, 6, 044115. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.J.; Accolla, R.P.; Williams, S.J. Isomotive dielectrophoresis for parallel analysis of individual particles. Electrophoresis 2017, 38, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Tada, S.; Eguchi, M.; Okano, K. Insulator-based dielectrophoresis combined with the isomotive AC electric field and applied to single cell analysis. Electrophoresis 2019, 40, 1494–1497. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.Z.; Green, N.G.; Williams, S.J. Scaling law analysis of electrohydrodynamics and delectrophoresis for isomotive dielectrophoresis microfluidic device. Electrophoresis 2020, 41, 148–155. [Google Scholar] [CrossRef]
- Lo, Y.J.; Lei, U. Measurement of the real part of the Clausius–Mossotti factor of dielectrophoresis for Brownian particles. Electrophoresis 2020, 41, 137–147. [Google Scholar] [CrossRef]
- Madou, M.J. Fundamentals of Microfabrication-the Science of Miniaturization, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Ishikawa, A.; Hanai, T.; Koizumi, N. Dielectric properties of dextran gel sephadex G-25 dispersed in aqueous phases. Jap. J. Appl. Phys. 1982, 21, 1762–1768. [Google Scholar] [CrossRef]
- Yang, C.Y.; Lei, U. Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis. J. Appl. Phys. 2007, 102, 094702. [Google Scholar] [CrossRef]
- Wang, X.-B.; Huang, Y.; Becker, F.F.; Gascoyne, P.R.C. A unified theory of dielectrophoresis and travelling wave dielectrophoresis. J. Phys. D 1994, 27, 1571–1574. [Google Scholar] [CrossRef]
- COMSOL Multiphysics® 5.5. Available online: https://www.comsol.com/ (accessed on 21 March 2020).
- Lo, Y.J.; Lei, U. Quasistatic force and torque on a spherical particle under generalized dielectrophoresis in the vicinity of walls. Appl. Phys. Lett. 2009, 95, 253701. [Google Scholar] [CrossRef]
- Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics; Martinus Nijhoff Publicationl: Boston, MA, USA, 1986; ISBN 90-247-2877-0. [Google Scholar]
- Lei, U.; Huang, C.W.; Chen, J.; Yang, C.Y.; Lo, Y.J.; Wo, A.; Chen, C.F.; Fung, T.W. A travelling wave dielectrophoretic pump for blood delivery. Lab Chip 2009, 9, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
Particles | Medium | h | ||||||
---|---|---|---|---|---|---|---|---|
Sephadex | KCl | 0.023 | 1 | 1 | 0.001–0.1 | 1 | −0.294 | 32–34 |
Sephadex | KCl | 0.023 | 1 | 1 | 0.1–40 | 0.05 | −0.333 | 33–39 |
CL1-0 | Mannitol | 0.01 | 1 | 1 | 0.001–0.009 | 0.01 | −0.282 | 36–41 |
CL1-0 | Mannitol | 0.01 | 1 | 2 | 0.01–40 | 0.005 | −0.297 | 31–36 |
CL1-5 | Mannitol | 0.01 | 1 | 1 | 0.001–0.009 | 0.01 | −0.179 | 37–42 |
CL1-5 | Mannitol | 0.01 | 1 | 2 | 0.01–40 | 0.005 | −0.168 | 30–38 |
Colo205 | Mannitol | 0.01 | 1 | 1 | 0.001–0.009 | 0.01 | −0.232 | 35–42 |
Colo205 | Mannitol | 0.01 | 1 | 2 | 0.01–40 | 0.005 | −0.240 | 31–37 |
CL1-0 | Mannitol | 0.1 | 1 | 1 | 0.001–0.09 | 0.1 | −0.107 | 35–40 |
CL1-0 | Mannitol | 0.1 | 1 | 2 | 0.1–40 | 0.05 | −0.154 | 31–36 |
CL1-5 | Mannitol | 0.1 | 1 | 1 | 0.001–0.06 | 0.075 | −0.150 | 36–38 |
CL1-5 | Mannitol | 0.1 | 1 | 2 | 0.07–40 | 0.05 | −0.153 | 30–34 |
Colo205 | Mannitol | 0.1 | 1 | 1 | 0.001–0.09 | 0.1 | −0.184 | 34–39 |
Colo205 | Mannitol | 0.1 | 1 | 2 | 0.1–40 | 0.05 | −0.334 | 31–35 |
CL1-0 | RPMI | 1.2 | 1 | 1 | 0.01–0.4 | 1 | −0.156 | 35–38 |
CL1-0 | RPMI | 1.2 | 1 | 1 | 0.5–40 | 0.3 | −0.158 * | 33–40 |
CL1-5 | RPMI | 1.2 | 1 | 1 | 0.01–0.4 | 1 | −0.164 | 33–40 |
CL1-5 | RPMI | 1.2 | 1 | 1 | 0.5–40 | 0.3 | −0.173 * | 34–40 |
Colo205 | RPMI | 1.2 | 1 | 1 | 0.01–0.4 | 1 | −0.224 | 31–36 |
Colo205 | RPMI | 1.2 | 1 | 1 | 0.5–40 | 0.3 | −0.256 * | 35–41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-Y.; Lo, Y.-J.; Lei, U. Measurement of the Imaginary Part of the Clausius-Mossotti Factor of Particle/Cell via Dual Frequency Electrorotation. Micromachines 2020, 11, 329. https://doi.org/10.3390/mi11030329
Lin Y-Y, Lo Y-J, Lei U. Measurement of the Imaginary Part of the Clausius-Mossotti Factor of Particle/Cell via Dual Frequency Electrorotation. Micromachines. 2020; 11(3):329. https://doi.org/10.3390/mi11030329
Chicago/Turabian StyleLin, Yung-Yi, Ying-Jie Lo, and U Lei. 2020. "Measurement of the Imaginary Part of the Clausius-Mossotti Factor of Particle/Cell via Dual Frequency Electrorotation" Micromachines 11, no. 3: 329. https://doi.org/10.3390/mi11030329
APA StyleLin, Y. -Y., Lo, Y. -J., & Lei, U. (2020). Measurement of the Imaginary Part of the Clausius-Mossotti Factor of Particle/Cell via Dual Frequency Electrorotation. Micromachines, 11(3), 329. https://doi.org/10.3390/mi11030329