Integrated Raman Laser: A Review of the Last Two Decades
Abstract
:1. Introduction
2. Theoretical Background of SRS and Introduction to Raman Laser
3. The First Silicon Laser
- Using spatial confinement of the electron in order to overcome the indirect band structure;
- Using optically active dopants obtained by the introduction of rare earth impurities;
- Take advantage of Raman scattering in order to achieve optical gain.
4. Raman Laser in Microphotonics
4.1. Raman Laser in Microcavities
4.2. Raman Laser in Photonics Crystals
5. Raman Laser in Nanophotonics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boyd, R.W. Nonlinear Optics; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Shen, Y.R. The Principles of Nonlinear Optics; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Sasian, J.M. Design of null lens correctors for the testing of astronomical optics. Opt. Eng. 1988, 27, 121051. [Google Scholar] [CrossRef]
- Agrawal, G.P.; Boyd, R.W. Contemporary Nonlinear Optics; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Armstrong, J.A.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between Light Waves in a Nonlinear Dielectric. Phys. Rev. 1962, 127, 1918–1939. [Google Scholar] [CrossRef]
- McClung, F.J.; Hellwarth, R.W. Giant optical pulsations from ruby. J. Appl. Phys. 1962, 33, 828–829. [Google Scholar] [CrossRef]
- Eckhardt, G.; Hellwarth, R.W.; McClung, F.J.; Schwarz, S.E.; Weiner, D.; Woodbury, E.J. Stimulated Raman scattering from organicliquids. Phys. Rev. Lett. 1962, 9, 455–457. [Google Scholar] [CrossRef]
- Eckhardt, G.; Bortfeld, D.P.; Geller, M. Stimulated emission of stokes and anti-stokes raman lines from diamond, calcite, and α-sulfur single crystals. Appl. Phys. Lett. 1963, 3, 137–138. [Google Scholar] [CrossRef]
- Hellwarth, R.W. Theory of Stimulated Raman Scattering. Phys. Rev. 1963, 130, 1850–1852. [Google Scholar] [CrossRef]
- Bloembergen, N.; Shen, Y.R. Coupling Between Vibrations and Light Waves in Raman Laser Media. Phys. Rev. Lett. 1964, 12, 504–507. [Google Scholar] [CrossRef]
- Bloembergen, N.; Shen, Y.R. Multimode Effects in Stimulated Raman Emission. Phys. Rev. Lett. 1964, 13, 720–724. [Google Scholar] [CrossRef]
- Shen, Y.R.; Bloembergen, N. Theory of Stimulated Brillouin and Raman Scattering. Phys. Rev. 1965, 137, A1787–A1805. [Google Scholar] [CrossRef]
- Bloembergen, N. The Stimulated Raman Effect. Am. J. Phys. 1967, 35, 989. [Google Scholar] [CrossRef]
- Wang, C.-S. Theory of Stimulated Raman Scattering. Phys. Rev. 1969, 182, 482–494. [Google Scholar] [CrossRef]
- Raymer, M.G.; Mostowski, J. Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation. Phys. Rev. A 1981, 24, 1980–1993. [Google Scholar] [CrossRef]
- Raymer, M.G.; Walmsley, I.A.; Mostowski, J.; Sobolewska, B. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Phys. Rev. A 1985, 32, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, G.I.; Seaton, C.T. Nonlinear integrated optics. J. Appl. Phys. 1985, 58, R57–R78. [Google Scholar] [CrossRef]
- Guo, Y.; Kao, C.K.; Li, H.E.; Chiang, K.S. Nonlinear Photonics: Nonlinearities in Optics, Optoelectronics and Fiber Communications; Springer-Verlag: Heidelberg, Germany, 2002. [Google Scholar]
- Vahala, K. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Shields, A.J. Semiconductor quantum light sources. Nat. Photon. 2007, 1, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.M. Optical Bistability: Controlling Light with Light; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Yokoyama, H.; Ujihara, K. Spontaneous Emission and Laser Oscillation in Microcavities; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Kippenberg, T.J.; Vahala, K.J. Cavity Opto-Mechanics. Opt. Express 2007, 15, 17172. [Google Scholar] [CrossRef]
- Gerard, J.-M.; Sermage, B.; Gayral, B.; Legrand, B.; Costard, E.; Thierry-Mieg, V. Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Phys. Rev. Lett. 1998, 81, 1110–1113. [Google Scholar] [CrossRef]
- Reithmaier, J.P.; Sęk, G.; Loffler, A.; Hofmann, C.; Kühn, S.; Reitzenstein, S.; Keldysh, L.V.; Kulakovskii, V.D.; Reinecke, T.L.; Forchel, A. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004, 432, 197–200. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, P.; Lipson, M. Breaking the delay bandwidth product in a photonic structure. Nature Phys. 2007, 3, 406–410. [Google Scholar] [CrossRef]
- Little, B.; Haus, H.; Foresi, J.; Kimerling, L.; Ippen, E.; Ripin, D. Wavelength switching and routing using absorption and resonance. IEEE Photon-Technol. Lett. 1998, 10, 816–818. [Google Scholar] [CrossRef]
- Notomi, M.; Tanabe, T.; Shinya, A.; Kuramochi, E.; Taniyama, H.; Mitsugi, S.; Morita, M. Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Opt. Express 2007, 15, 17458–17481. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.N. Nanophotonics; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Haus, J.W. Fundamentals and Applications of Nanophotonics; Woodhead: Sawston, UK, 2016. [Google Scholar]
- Zheludev, N.I. Nonlinear optics on the nano scale. Contemp. Phys. 2010, 43, 365–377. [Google Scholar] [CrossRef]
- Banfi, G.; DeGiorgio, V.; Ricard, D. Nonlinear optical properties of semiconductor nanocrystals. Adv. Phys. 1998, 47, 447–510. [Google Scholar] [CrossRef]
- Kawata, S.; Inouye, Y.; Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photon. 2009, 3, 388–394. [Google Scholar] [CrossRef]
- Cho, C.-H.; Aspetti, C.O.; Park, J.; Agarwal, R. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat. Photon. 2013, 7, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaponenko, S.V. Effects of photon density of states on Raman scattering in mesoscopic structures. Phys. Rev. B 2002, 65, 140303. [Google Scholar] [CrossRef] [Green Version]
- Maeda, A.; Matsumoto, S.; Kishida, H.; Takenobu, T.; Iwasa, Y.; Shiraishi, M.; Ata, M.; Okamoto, H. Large Optical Nonlinearity of Semiconducting Single-Walled Carbon Nanotubes under Resonant Excitations. Phys. Rev. Lett. 2005, 94, 047404. [Google Scholar] [CrossRef]
- Peng, F. Laser-induced phonon amplification in a single-walled nano tube. Europhys. Lett. 2006, 73, 116–120. [Google Scholar] [CrossRef]
- Zhang, B.; Shimazaki, K.; Shiokawa, T.; Suzuki, M.; Ishibashi, K.; Saito, R. Stimulated Raman scattering from individual single-wall carbon nanotubes. Appl. Phys. Lett. 2006, 88, 241101. [Google Scholar] [CrossRef]
- Wu, J.; Gupta, A.K.; Gutierrez, H.R.; Eklund, P.C. Cavity-Enhanced Stimulated Raman Scattering from Short GaP Nanowires. Nano Lett. 2009, 9, 3252–3257. [Google Scholar] [CrossRef] [PubMed]
- Pask, H. The design and operation of solid-state Raman lasers. Prog. Quantum Electron. 2003, 27, 3–56. [Google Scholar] [CrossRef]
- Černý, P. Solid state lasers with Raman frequency conversion. Prog. Quantum Electron. 2004, 28, 113–143. [Google Scholar] [CrossRef]
- Piper, J.A.; Pask, H. Crystalline Raman Lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 692–704. [Google Scholar] [CrossRef]
- Pask, H.; Dekker, P.; Mildren, R.P.; Spence, D.; Piper, J.A. Wavelength-versatile visible and UV sources based on crystalline Raman lasers. Prog. Quantum Electron. 2008, 32, 121–158. [Google Scholar] [CrossRef]
- Nishizawa, J.-I.; Suto, K. Semiconductor Raman laser. J. Appl. Phys. 1980, 51, 2429. [Google Scholar] [CrossRef]
- Stolen, R.H. Fundamentals of Raman Amplification in Fibers. In Springer Series in Optical Sciences; Springer Science and Business Media LLC: Berlin, Germany, 2007; Volume 90, pp. 35–39. [Google Scholar]
- Sirleto, L.; Vergara, A.; Ferrara, M.A. Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photon. 2017, 9, 169. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Vergara, A. Toward an ideal nanomaterial for on-chip Raman laser. J. Nonlinear Opt. Phys. Mater. 2017, 26, 1750039. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Rendina, I.; Jalali, B. Broadening and tuning of spontaneous Raman emission in porous silicon at 1.5 μm. Appl. Phys. Lett. 2006, 88, 211105. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Rendina, I.; Basu, S.N.; Warga, J.; Li, R.; Negro, L.D. Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures. Appl. Phys. Lett. 2008, 93, 251104. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Donato, M.G.; Sirleto, L.; Messina, G.; Santangelo, S.; Rendina, I. Study of strain and wetting phenomena in porous silicon by Raman scattering. J. Raman Spectrosc. 2008, 39, 199–204. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Nicotra, G.; Spinella, C.; Rendina, I. Observation of stimulated Raman scattering in silicon nanocomposites. Appl. Phys. Lett. 2009, 94, 221106. [Google Scholar] [CrossRef]
- Sirleto, L.; Donato, M.G.; Messina, G.; Santangelo, S.; Lipovskii, A.; Tagantsev, D.; Pelli, S.; Righini, G.C. Raman gain in niobium-phosphate glasses. Appl. Phys. Lett. 2009, 94, 31105. [Google Scholar] [CrossRef] [Green Version]
- Donato, M.G.; Gagliardi, M.; Sirleto, L.; Messina, G.; Lipovskii, A.; Tagantsev, D.; Righini, G.C. Raman optical amplification properties of sodium–niobium–phosphate glasses. Appl. Phys. Lett. 2010, 97, 231111. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Sirleto, L.; Nicotra, G.; Spinella, C.; Rendina, I. Enhanced gain coefficient in Raman amplifier based on silicon nanocomposites. Photon. Nanostructures—Fundam. Appl. 2011, 9, 1–7. [Google Scholar] [CrossRef]
- Pernice, P.; Sirleto, L.; Vergara, A.; Aronne, A.; Gagliardi, M.; Fanelli, E.; Righini, G.C. Large Raman Gain in a Stable Nanocomposite Based on Niobiosilicate Glass. J. Phys. Chem. C 2011, 115, 17314–17319. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Nikitin, T.; Novikov, S.; Khriachtchev, L. Giant Raman gain in silicon nanocrystals. Nat. Commun. 2012, 3, 1220. [Google Scholar] [CrossRef] [Green Version]
- Sirleto, L.; Aronne, A.; Gioffré, M.; Fanelli, E.; Righini, G.C.; Pernice, P.; Vergara, A. Compositional and thermal treatment effects on Raman gain and bandwidth in nanostructured silica based glasses. Opt. Mater. 2013, 36, 408–413. [Google Scholar] [CrossRef]
- Lipovskii, A.; Tagantsev, D.; Apakova, I.E.; Markova, T.S.; Yanush, O.V.; Donato, M.; Sirleto, L.; Messina, G.; Righini, G.C. Mid-Range Structure of Niobium–Sodium–Phosphate Electro-Optic Glasses. J. Phys. Chem. B 2013, 117, 1444–1450. [Google Scholar] [CrossRef]
- Liang, D.; Bowers, J.E. Recent progress in lasers on silicon. Nat. Photon. 2010, 4, 511–517. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photon. 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photon. 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Jalali, B.; Yegnanarayanan, S.; Yoshimoto, T.; Coppinger, F.; Yoon, T.; Rendina, I. Advances in silicon-on-insulator optoelectronics. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Jalali, B.; Raghunathan, V.; Dimitropoulos, D.; Boyraz, O. Raman-based silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 412–421. [Google Scholar] [CrossRef]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photon. 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Jalali, B. Silicon photonics: Nonlinear optics in the mid-infrared. Nat. Photonics 2010, 4, 506–508. [Google Scholar] [CrossRef]
- Xu, Q.; Almeida, V.; Lipson, M. Micrometer-scale all-optical wavelength converter on silicon. Opt. Lett. 2005, 30, 2733–2735. [Google Scholar] [CrossRef] [Green Version]
- Sharping, J.E.; Lee, K.F.; Foster, M.A.; Turner, A.C.; Schmidt, B.S.; Lipson, M.; Gaeta, A.L.; Kumar, P. Generation of correlated photons in nanoscale silicon waveguides. Opt. Express 2006, 14, 12388–12393. [Google Scholar] [CrossRef] [Green Version]
- Rukhlenko, I.D.; Premaratne, M.; Agrawal, G.P. Nonlinear Silicon Photonics: Analytical Tools. IEEE J. Sel. Top. Quantum Electron. 2009, 16, 200–215. [Google Scholar] [CrossRef]
- Foster, M.A.; Turner, A.C.; Lipson, M.; Gaeta, A.L. Nonlinear optics in photonic nanowires. Opt. Express 2008, 16, 1300–1320. [Google Scholar] [CrossRef]
- Liu, X.; Osgood, R.M.; Vlasov, Y.; Green, W.M.J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photon. 2010, 4, 557–560. [Google Scholar] [CrossRef]
- Daldosso, N.; Pavesi, L. Low-dimensional silicon as a photonic material. In Nanosilicon; Elsevier: Amsterdam, The Netherlands, 2008; pp. 314–334. [Google Scholar]
- Rong, H.; Liu, A.; Jones, R.; Cohen, O.; Hak, D.; Nicolaescu, R.; Fang, A.; Paniccia, M. An all-silicon Raman laser. Nature 2005, 433, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Rong, H.; Xu, S.; Kuo, Y.-H.; Sih, V.; Cohen, O.; Raday, O.; Paniccia, M. Low-threshold continuous-wave Raman silicon laser. Nat. Photon. 2007, 1, 232–237. [Google Scholar] [CrossRef]
- Claps, R.; Dimitropoulos, D.; Raghunathan, V.; Han, Y.; Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 2003, 11, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Delong, K.W.; Stegeman, G.I. Two-photon absorption as a limitation to all-optical waveguide switching in semiconductors. Appl. Phys. Lett. 1990, 57, 2063–2064. [Google Scholar] [CrossRef]
- Liang, T.; Tsang, H.K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 2004, 84, 2745–2747. [Google Scholar] [CrossRef]
- Rong, H.; Liu, A.; Nicolaescu, R.; Paniccia, M.; Cohen, O.; Hak, D. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide. Appl. Phys. Lett. 2004, 85, 2196. [Google Scholar] [CrossRef]
- DeLong, R.; Raghunathan, V.; Dimitropoulos, D.; Jalali, B. Role of nonlinear absorption on Raman amplification in Silicon waveguides. Opt. Expr. 2004, 12, 2774–2780. [Google Scholar]
- Boyraz, O.; Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 2004, 12, 5269–5273. [Google Scholar] [CrossRef]
- Liu, A.; Rong, H.; Paniccia, M.; Cohen, O.; Hak, D. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 2004, 12, 4261–4268. [Google Scholar] [CrossRef]
- Rong, H.; Jones, R.; Liu, A.; Cohen, O.; Hak, D.; Fang, A.; Paniccia, M. A continuous-wave Raman silicon laser. Nature 2005, 433, 725–728. [Google Scholar] [CrossRef] [PubMed]
- Boyraz, O.; Jalali, B. Demonstration of directly modulated silicon Raman laser. Opt. Express 2005, 13, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Tyszka-Zawadzka, A.; Szczepanski, P.; Mossakowska-Wyszyńska, A.; Karpierz, M.; Bugaj, M. Semi-analytical model of Raman generation in silicon-on-insulator rib waveguide with DBR/F-P resonator. Opto-Electronics Rev. 2013, 21, 382–389. [Google Scholar] [CrossRef] [Green Version]
- De Leonardis, F.; Troia, B.; Campanella, C.E.; Passaro, V.M.N. Thermal and stress influence on performance of SOI racetrack resonator Raman lasers. J. Opt. 2014, 16, 85501. [Google Scholar] [CrossRef]
- Lin, H.-B.; Campillo, A. Microcavity enhanced Raman gain. Opt. Commun. 1997, 133, 287–292. [Google Scholar] [CrossRef]
- Spillane, S.M.; Kippenberg, T.J.; Vahala, K.J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature. 2002, 415, 621–623. [Google Scholar] [CrossRef]
- Sennaroglu, A.; Kiraz, A.; Dündar, M.A.; Kurt, A.; Demirel, A.L. Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface. Opt. Lett. 2007, 32, 2197–2199. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Spillane, S.M.; Min, B.; Vahala, K.J. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultra-high-Q optical microcavities. IEEE J. Sel. Top. Quantum Electron 2004, 10, 1219–1228. [Google Scholar] [CrossRef]
- Dantham, V.R.; Bisht, P.; Namboodiri, C.K.R. Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere. J. Appl. Phys. 2011, 109, 103103. [Google Scholar] [CrossRef]
- Foster, M.A.; Turner, A.C.; Sharping, J.E.; Schmidt, B.S.; Lipson, M.; Gaeta, A.L. Broad-band optical parametric gain on a silicon photonic chip. Nature 2006, 441, 960–963. [Google Scholar] [CrossRef]
- Griffith, A.G.; Yu, M.; Okawachi, Y.; Cardenas, J.; Mohanty, A.; Gaeta, A.L.; Lipson, M. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. Opt. Express 2016, 24, 13044. [Google Scholar] [CrossRef] [PubMed]
- Latawiec, P.; Venkataraman, V.; Burek, M.J.; Hausmann, B.J.M.; Bulu, I.; Lončar, M. On-chip diamond Raman laser. Optica 2015, 2, 924–928. [Google Scholar] [CrossRef]
- Daldosso, N.; Pavesi, L. Nanosilicon photonics. Laser Photon. Rev. 2009, 3, 508–534. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Z.-H.; Zou, C.-L.; Shen, Z.; Guo, G.-C.; Dong, C.-H. Tunable Raman laser in a hollow bottle-like microresonator. Opt. Express 2017, 25, 16879. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Clements, W.R.; Yu, X.-C.; Shi, K.; Gong, Q.; Xiao, Y.-F. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA 2014, 111, 14657–14662. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, S.; Zhu, J.; Yang, X.; Peng, B.; Yilmaz, H.; He, L.; Monifi, F.; Huang, S.H.; Long, G.-L.; Yang, L. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA 2014, 111, E3836–E3844. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wong, C.W. Design of photonic band gap nanocavities for stimulated Raman amplification and lasing in monolithic silicon. Opt. Express 2005, 13, 4723–4730. [Google Scholar] [CrossRef]
- Yang, X.; Wong, C.W. Coupled-mode theory for stimulated Raman scattering in high-Q/Vm photonic band gap defect cavity lasers. Opt. Express 2007, 15, 4763–4780. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wong, C.W. Stimulated Raman amplification and lasing in silicon photonic band gap nanocavities. Sensors Actuators A: Phys. 2007, 133, 278–282. [Google Scholar] [CrossRef]
- McMillan, J.F.; Yang, X.; Panoiu, N.C.; Osgood, R.M.; Wong, C.W. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt. Lett. 2006, 31, 1235. [Google Scholar] [CrossRef] [Green Version]
- McMillan, J.F.; Yu, M.; Kwong, D.-L.; Wong, C.W. Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides. Appl. Phys. Lett. 2008, 93, 251105. [Google Scholar] [CrossRef] [Green Version]
- Checoury, X.; Han, Z.; Boucaud, P. Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation. Phys. Rev. B 2010, 82, 041308. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Inui, Y.; Chihara, M.; Asano, T.; Terawaki, R.; Noda, S. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 2013, 498, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Arivuoli, D. Nanomaterials for nonlinear optical applications: A review. Rev. Adv. Mater. Sci. 2012, 30, 243–253. [Google Scholar]
- Martinez, A.; Blasco, J.; Sanchis, P.; Galán, J.V.; García-Rupérez, J.; Jordana, E.; Gautier, P.; Lebour, Y.; Hernández, S.; Spano, R.; et al. Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths. Nano Lett. 2010, 10, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, H.; Bulutay, C. Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: A theoretical assessment. Opt. Commun. 2008, 281, 4118–4120. [Google Scholar] [CrossRef]
- Ito, M.; Imakita, K.; Fujii, M.; Hayashi, S. Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO[sub 2] films: Annealing temperature dependence. J. Appl. Phys. 2010, 108, 63512. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Nabet, B.; Spanier, J.E. Enhanced Raman Scattering from Individual Semiconductor Nanocones and Nanowires. Phys. Rev. Lett. 2006, 96, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, D.; Ren, M.-L.; Berger, J.S.; Yoo, J.; Pan, A.; Agarwal, R. Nanocavity-Enhanced Giant Stimulated Raman Scattering in Si Nanowires in the Visible Light Region. Nano Lett. 2019, 19, 1204–1209. [Google Scholar] [CrossRef]
- Rukhlenko, I.D.; Kalavally, V. Raman Amplification in Silicon-Nanocrystal Waveguides. J. Light. Technol. 2013, 32, 130–134. [Google Scholar] [CrossRef]
- Datta, T.; Sen, M. Characterization of slotted photonic crystal waveguide and its application in nonlinear optics. Superlattices Microstruct. 2017, 109, 107–116. [Google Scholar] [CrossRef]
- Datta, T.; Sen, M. LED pumped micron-scale all-silicon Raman amplifier. Superlattices Microstruct. 2017, 110, 273–280. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Sen, M. An integrable all-silicon slotted photonic crystal Raman laser. J. Appl. Phys. 2019, 126, 233103. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Okano, M.; Shishido, H.; Noda, S.; Takahashi, Y. Implementing a Raman silicon nanocavity laser for integrated optical circuits by using a (100) SOI wafer with a 45-degree-rotated top silicon layer. OSA Contin. 2019, 2, 2098–2112. [Google Scholar] [CrossRef]
- Song, B.-S.; Noda, S.; Asano, T.; Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 2005, 4, 207–210. [Google Scholar] [CrossRef]
- Ruan, Z.; Fan, S. Superscattering of Light from Subwavelength Nanostructures. Phys. Rev. Lett. 2010, 105, 013901. [Google Scholar] [CrossRef]
- Shan, L.; Pauliat, G.; Vienne, G.; Tong, L.; Lebrun, S. Design of nanofibres for efficient stimulated Raman scattering in the evanescent field. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13030. [Google Scholar] [CrossRef] [Green Version]
- Zatryb, G.; Wilson, P.R.J.; Wojcik, J.; Misiewicz, J.; Mascher, P.; Podhorodecki, A. Raman scattering from confined acoustic phonons of silicon nanocrystals in silicon oxide matrix. Phys. Rev. B 2015, 91, 235444. [Google Scholar] [CrossRef] [Green Version]
- Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light–matter interaction at the nanometer scale. Nature 2002, 418, 159–162. [Google Scholar] [CrossRef]
- Hillenbrand, R.; Keilmann, F. Complex Optical Constants on a Subwavelength Scale. Phys. Rev. Lett. 2000, 85, 3029–3032. [Google Scholar] [CrossRef] [Green Version]
- Weeber, J.; Dereux, A.; Girard, C.; Francs, G.C.D.; Krenn, J.; Goudonnet, J.P. Optical addressing at the subwavelength scale. Phys. Rev. E 2000, 62, 7381–7388. [Google Scholar] [CrossRef] [PubMed]
- Prince, R.; Frontiera, R.R.; Potma, E.O. Stimulated Raman Scattering: From Bulk to Nano. Chem. Rev. 2016, 117, 5070–5094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhen, Y.-R.; Neumann, O.; Day, J.K.; Nordlander, P.; Halas, N.J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 4424. [Google Scholar] [CrossRef] [PubMed]
- Yampolsky, S.; Fishman, D.A.; Dey, S.; Hulkko, E.; Banik, M.; Potma, E.O.; Apkarian, V.A. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photon. 2014, 8, 650–656. [Google Scholar] [CrossRef]
- Wickramasinghe, H.; Chaigneau, M.; Yasukuni, R.; Picardi, G.; Ossikovski, R. Billion-Fold Increase in Tip-Enhanced Raman Signal. ACS Nano 2014, 8, 3421–3426. [Google Scholar] [CrossRef]
- Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D.R.; et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916. [Google Scholar] [CrossRef]
- Nie, S. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Sci. 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Schuller, J.A.; Taubner, T.; Brongersma, M.L. Optical antenna thermal emitters. Nat. Photon. 2009, 3, 658–661. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E. Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index. Phys. Rev. A 2009, 80, 013808. [Google Scholar] [CrossRef]
- Tribelsky, M.; Luk’Yanchuk, B. Anomalous Light Scattering by Small Particles. Phys. Rev. Lett. 2006, 97, 263902. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, M.A.; Sirleto, L. Integrated Raman Laser: A Review of the Last Two Decades. Micromachines 2020, 11, 330. https://doi.org/10.3390/mi11030330
Ferrara MA, Sirleto L. Integrated Raman Laser: A Review of the Last Two Decades. Micromachines. 2020; 11(3):330. https://doi.org/10.3390/mi11030330
Chicago/Turabian StyleFerrara, Maria Antonietta, and Luigi Sirleto. 2020. "Integrated Raman Laser: A Review of the Last Two Decades" Micromachines 11, no. 3: 330. https://doi.org/10.3390/mi11030330
APA StyleFerrara, M. A., & Sirleto, L. (2020). Integrated Raman Laser: A Review of the Last Two Decades. Micromachines, 11(3), 330. https://doi.org/10.3390/mi11030330