Development of Pressure-Responsive PolyPropylene and Biochar-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Characterization of Feedstock and Biochar
3.2. Characterization of Biochar-Based Composites
3.2.1. Mechanical and Thermal Properties
3.2.2. Electrical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Basu Majumder, A.; Bera, B.; Rajan, A. Tea statistics: Global scenario. Int. J. Tea Sci. 2010, 8, 121–124. [Google Scholar]
- Sanderson, G.W. The Chemistry of Tea and Tea Manufacturing. In Recent Advances in Phytochemistry; Elsevier: Amsterdam, The Netherlands, 1972; Volume 5, pp. 247–316. [Google Scholar]
- Robinson, J.; Owuor, P.O. Tea Aroma. In Tea; Springer: Berlin/Heidelberg, Germany, 1992; pp. 603–647. [Google Scholar]
- Yamanishi, T.; Kobayashi, A. Progress of tea aroma chemistry. In Flavor Chemistry; Springer: Berlin/Heidelberg, Germany, 1999; pp. 135–145. [Google Scholar]
- Khan, M.A.I.; Ueno, K.; Horimoto, S.; Komai, F.; Tanaka, K.; Ono, Y. Physicochemical, including spectroscopic, and biological analyses during composting of green tea waste and rice bran. Biol. Fertil. Soils 2009, 45, 305–313. [Google Scholar] [CrossRef]
- Bess, V.H. Understanding compost tea. BioCycle 2000, 41, 71. [Google Scholar]
- Gao, P.; Ogata, Y. Biodegradability of PLA and Tea Waste Composites Based on “CHAMU” and the “Tea Waste Recycling System”. In Proceedings of IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK; p. 022034.
- Cay, S.; Uyanık, A.; Özaşık, A. Single and binary component adsorption of copper (II) and cadmium (II) from aqueous solutions using tea-industry waste. Sep. Purif. Technol. 2004, 38, 273–280. [Google Scholar] [CrossRef]
- Mondal, M. Removal of Pb (II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column. J. Environ. Manag. 2009, 90, 3266–3271. [Google Scholar] [CrossRef] [PubMed]
- Madrakian, T.; Afkhami, A.; Ahmadi, M. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 99, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, H.; Zeng, W.; Ma, J.; Zhao, S.; Jiang, Y.; Huang, C.; Mao, H.; Liao, Y. Enhanced fluoride adsorption of aluminum humate and its resistance on fluoride accumulation in tea leaves. Environ. Technol. 2020, 41, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Sui, W.; Xiao, Y.; Liu, R.; Wu, T.; Zhang, M. Steam explosion modification on tea waste to enhance bioactive compounds’ extractability and antioxidant capacity of extracts. J. Food Eng. 2019, 261, 51–59. [Google Scholar] [CrossRef]
- Senol, A.; Aydin, A. Solid–liquid extraction of caffeine from tea waste using battery type extractor: Process optimization. J. Food Eng. 2006, 75, 565–573. [Google Scholar] [CrossRef]
- Shalmashi, A.; Abedi, M.; Golmohammad, F.; Eikani, M.H. Isolation of caffeine from tea waste using subcritical water extraction. J. Food Process Eng. 2010, 33, 701–711. [Google Scholar] [CrossRef]
- Uzun, B.B.; Apaydin-Varol, E.; Ateş, F.; Özbay, N.; Pütün, A.E. Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char. Fuel 2010, 89, 176–184. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Roy, C. Characterization of bio-oils in chemical families. Biomass Bioenergy 2007, 31, 222–242. [Google Scholar] [CrossRef]
- Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rovere, M.; Tagliaferro, A. A review of non-soil biochar applications. Materials 2020, 13, 261. [Google Scholar] [CrossRef] [Green Version]
- Aup-Ngoen, K.; Noipitak, M. Effect of carbon-rich biochar on mechanical properties of PLA-biochar composites. Sustain. Chem. Pharm. 2020, 15, 100204. [Google Scholar] [CrossRef]
- Arif, M.; Asif, M.; Ahmed, I. Advanced composite material for aerospace application—A review. Int. J. Eng. Mfg. Sci 2017, 7, 393–409. [Google Scholar]
- Jacob, A. Carbon fibre and cars–2013 in review. Reinf. Plast. 2014, 58, 18–19. [Google Scholar] [CrossRef]
- Research, G.V. Market Value of Composite Materials Worldwide from 2015 to 2024 (in Billion U.S. Dollars). Available online: https://www.statista.com/statistics/944471/global-market-value-of-composites/ (accessed on 3 November 2019).
- Zhang, Q.; Yi, W.; Li, Z.; Wang, L.; Cai, H. Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers 2018, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Arrigo, R.; Jagdale, P.; Bartoli, M.; Tagliaferro, A.; Malucelli, G. Structure–property relationships in polyethylene-based composites filled with biochar derived from waste coffee grounds. Polymers 2019, 11, 1336. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Khan, M.U.; Lin, X.; Cai, H.; Lei, H. Temperature varied biochar as a reinforcing filler for high-density polyethylene composites. Compos. Part B Eng. 2019, 175, 107151. [Google Scholar] [CrossRef]
- Das, O.; Bhattacharyya, D.; Hui, D.; Lau, K.-T. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos. Part B Eng. 2016, 106, 120–128. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties. Waste Manag. 2016, 49, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Kim, N.K.; Hedenqvist, M.S.; Lin, R.J.; Sarmah, A.K.; Bhattacharyya, D. An attempt to find a suitable biomass for biochar-based polypropylene biocomposites. Environ. Manag. 2018, 62, 403–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl. Sci. 2019, 9, 1149. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Huang, A.; Chen, Y.-J.; Li, D.; Turng, L.-S. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Compos. Part B Eng. 2018, 153, 277–284. [Google Scholar] [CrossRef]
- Giorcelli, M.; Savi, P.; Khan, A.; Tagliaferro, A. Analysis of biochar with different pyrolysis temperatures used as filler in epoxy resin composites. Biomass Bioenergy 2019, 122, 466–471. [Google Scholar] [CrossRef]
- Khan, A.; Savi, P.; Quaranta, S.; Rovere, M.; Giorcelli, M.; Tagliaferro, A.; Rosso, C.; Jia, C. Low-cost carbon fillers to improve mechanical properties and conductivity of epoxy composites. Polymers 2017, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Savi, P.; Yasir, M.; Bartoli, M.; Giorcelli, M.; Longo, M. Electrical and microwave characterization of thermal annealed sewage sludge derived biochar composites. Appl. Sci. 2020, 10, 1334. [Google Scholar] [CrossRef] [Green Version]
- Giorcelli, M.; Bartoli, M. Development of coffee biochar filler for the production of electrical conductive reinforced plastic. Polymers 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Tzounis, L.; Hegde, M.; Liebscher, M.; Dingemans, T.; Pötschke, P.; Paipetis, A.S.; Zafeiropoulos, N.E.; Stamm, M. All-aromatic SWCNT-Polyetherimide nanocomposites for thermal energy harvesting applications. Compos. Sci. Technol. 2018, 156, 158–165. [Google Scholar] [CrossRef]
- Liebscher, M.; Gärtner, T.; Tzounis, L.; Mičušík, M.; Pötschke, P.; Stamm, M.; Heinrich, G.; Voit, B. Influence of the MWCNT surface functionalization on the thermoelectric properties of melt-mixed polycarbonate composites. Compos. Sci. Technol. 2014, 101, 133–138. [Google Scholar] [CrossRef]
- Yee, M.J.; Mubarak, N.; Khalid, M.; Abdullah, E.; Jagadish, P. Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Funck, A.; Kaminsky, W. Polypropylene carbon nanotube composites by in situ polymerization. Compos. Sci. Technol. 2007, 67, 906–915. [Google Scholar] [CrossRef]
- Tzounis, L.; Gärtner, T.; Liebscher, M.; Pötschke, P.; Stamm, M.; Voit, B.; Heinrich, G. Influence of a cyclic butylene terephthalate oligomer on the processability and thermoelectric properties of polycarbonate/MWCNT nanocomposites. Polymer 2014, 55, 5381–5388. [Google Scholar] [CrossRef]
- Scherf, O. Development and Performance of Contact Sensors for Active Pedestrian Protection Systems. In Proceedings of the International Technical Conference on the Enhanced Safety of Vehicles, Washington, DC, USA, 6–9 June 2005; p. 9. [Google Scholar]
- Schoeneburg, R.; Breitling, T. Enhancement of Active and Passive Safety by Future PRE-SAFE® Systems. In Proceedings of the International Technical Conference on the Enhanced Safety of Vehicles, Washington, DC, USA, 6–9 June 2005; p. 9. [Google Scholar]
- Valentino, O.; Sarno, M.; Rainone, N.G.; Nobile, M.R.; Ciambelli, P.; Neitzert, H.C.; Simon, G.P. Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys. E Low Dimens. Syst. Nanostruct. 2008, 40, 2440–2445. [Google Scholar] [CrossRef]
- Fim, F.D.C.; Basso, N.R.; Graebin, A.P.; Azambuja, D.S.; Galland, G.B. Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 2013, 128, 2630–2637. [Google Scholar] [CrossRef]
- Cao, Q.; Song, Y.; Tan, Y.; Zheng, Q. Thermal-induced percolation in high-density polyethylene/carbon black composites. Polymer 2009, 50, 6350–6356. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Martinović, B.; Divjaković, V.; Budinski–Simendić, J. Polypropylene–carbon black interaction in conductive composites. J. Appl. Polym. Sci. 1993, 49, 1659–1669. [Google Scholar] [CrossRef]
- Gabhi, R.S.; Kirk, D.W.; Jia, C.Q. Preliminary investigation of electrical conductivity of monolithic biochar. Carbon 2017, 116, 435–442. [Google Scholar] [CrossRef]
- Bartoli, M.; Nasir, M.A.; Jagdale, P.; Passaglia, E.; Spiniello, R.; Rosso, C.; Giorcelli, M.; Rovere, M.; Tagliaferro, A. Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties. J. Compos. Mater. 2019, 38, 213–225. [Google Scholar] [CrossRef]
- Milani, R.F.; Morgano, M.A.; Saron, E.S.; Silva, F.F.; Cadore, S. Evaluation of direct analysis for trace elements in tea and herbal beverages by ICP-MS. J. Braz. Chem. Soc. 2015, 26, 1211–1217. [Google Scholar] [CrossRef]
- Wetton, R.; Ruff, P.; Gearing, J. Dynamic mechanical thermal analysis techniques in composites evaluation. In Composites Evaluation; Elsevier: Amsterdam, The Netherlands, 1987; pp. 207–214. [Google Scholar]
- Heeger, A.J. The critical regime of the metal-insulator transition in conducting polymers: Experimental studies. Phys. Scr. 2002, 2002, 30. [Google Scholar] [CrossRef]
- Mott, N.; Davis, E. Electronic Processes in Non-Cyrstalline Materials; Oxford Univ Press: Oxford, UK, 1979. [Google Scholar]
- Eschrig, H.N.F. Mott Metal-insulator transition. Taylor & Francis, London 1990, × + 286 pages, 166 figures, ISBN 0-85066-783-6. Cryst. Res. Technol. 1991, 26, 788. [Google Scholar]
- Piatti, E.; Galanti, F.; Pippione, G.; Pasquarelli, A.; Gonnelli, R.S. Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films. Eur. Phys. J. Spec. Top. 2019, 228, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Piatti, E.; Romanin, D.; Daghero, D.; Gonnelli, R.S. Two-dimensional hole transport in ion-gated diamond surfaces: A brief review. Low Temp. Phys. 2019, 45, 1143–1155. [Google Scholar] [CrossRef]
- Bartoli, M.; Giorcelli, M.; Rosso, C.; Rovere, M.; Jagdale, P.; Tagliaferro, A. Influence of commercial biochar fillers on brittleness/ductility of epoxy resin composites. Appl. Sci. 2019, 9, 3109. [Google Scholar] [CrossRef] [Green Version]
- Parker, R. Printable High Pressure Irreversible Indicating Material. US Patent No. 10,508,962, 17 December 2019. [Google Scholar]
- Van Krevelen, D.; Te Nijenhuis, K. Polymer properties. Prop. Polym. 1990, 3, 3–5. [Google Scholar]
Element | Composition (wt%) | |
---|---|---|
Exhausted Tea Leaves | Biochar | |
C | 31.8 | 73.3 |
O | 58.2 | 16.4 |
Mg | 2.6 | 0.5 |
Al | Not detected | 0.5 |
Si | Not detected | 0.2 |
P | Not detected | 0.6 |
S | Not detected | 0.3 |
Cl | Not detected | 0.4 |
K | 5.7 | 6.1 |
Ca | 1.3 | 1.9 |
Filler Loading (wt%) | Filler Type | Tonset 5% (°C) | Tmax (°C) | Residue at 700 °C (%) |
---|---|---|---|---|
0 | - | 393 | 460 | 0 |
30 | Biochar | 423 | 463 | 27 |
40 | Biochar | 423 | 467 | 39 |
40 | Carbon black | 445 | 471 | 35 |
Filler Loading (wt%) | Filler Type | TC (°C) | Tm (°C) | χ (%) | ||
---|---|---|---|---|---|---|
0 | - | 117 | 109 | 165 | 110 | 53 |
30 | Biochar | 128 | 82 | 165 | 83 | 57 |
40 | Biochar | 129 | 65 | 165 | 66 | 53 |
40 | Carbon Black | 127 | 73 | 167 | 74 | 59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noori, A.; Bartoli, M.; Frache, A.; Piatti, E.; Giorcelli, M.; Tagliaferro, A. Development of Pressure-Responsive PolyPropylene and Biochar-Based Materials. Micromachines 2020, 11, 339. https://doi.org/10.3390/mi11040339
Noori A, Bartoli M, Frache A, Piatti E, Giorcelli M, Tagliaferro A. Development of Pressure-Responsive PolyPropylene and Biochar-Based Materials. Micromachines. 2020; 11(4):339. https://doi.org/10.3390/mi11040339
Chicago/Turabian StyleNoori, Amir, Mattia Bartoli, Alberto Frache, Erik Piatti, Mauro Giorcelli, and Alberto Tagliaferro. 2020. "Development of Pressure-Responsive PolyPropylene and Biochar-Based Materials" Micromachines 11, no. 4: 339. https://doi.org/10.3390/mi11040339
APA StyleNoori, A., Bartoli, M., Frache, A., Piatti, E., Giorcelli, M., & Tagliaferro, A. (2020). Development of Pressure-Responsive PolyPropylene and Biochar-Based Materials. Micromachines, 11(4), 339. https://doi.org/10.3390/mi11040339