Self-Aligned Hierarchical ZnO Nanorod/NiO Nanosheet Arrays for High Photon Extraction Efficiency of GaN-Based Photonic Emitter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. ZNRs Synthesis
2.3. Hierarchical ZNR/NNS Arrays Synthesis
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lupan, O.; Pauporté, T.; Viana, B. Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting Diodes. Adv. Mater. 2010, 22, 3298–3302. [Google Scholar] [CrossRef] [PubMed]
- Drobek, M.; Kim, J.-H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S.S. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity. ACS Appl. Mater. Interfaces 2016, 8, 8323–8328. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Han, C.; Zhang, Y.; Zang, Z.; Wang, M.; Tanga, X.-S.; Du, J. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Sol. Energy Mater. Sol. Cells 2017, 172, 341–346. [Google Scholar] [CrossRef]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Kim, M.S.; Yu, J.S. Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass. Nanotechnology 2011, 22, 445602. [Google Scholar] [CrossRef]
- Özgür,, Ü.; Hofstetter, D.; Morkoç, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE 2010, 98, 1255–1268. [Google Scholar] [CrossRef]
- Litton, C.W.; Reynolds, D.C.; Collins, T.C. Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, 1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 29–86. [Google Scholar]
- Sun, Y.H.; Chen, L.; Bao, Y.; Zhang, Y.; Wang, J.; Fu, M.; Wu, J.; Ye, D. The Applications of Morphology Controlled ZnO in Catalysis. Catalysts 2016, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017, 43, 907–914. [Google Scholar] [CrossRef]
- Ao, D.; Li, Z.; Fu, Y.Q.; Tang, Y.; Yan, S.; Zu, X.T. Heterostructured NiO/ZnO Nanorod Arrays with Significantly Enhanced H2S Sensing Performance. Nanomaterials 2019, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Ha, K.; Kang, S.-H.; Yohn, G.-J.; Lee, H.-J.; Park, S.-J.; Kim, K.-K. Self-standing ZnO nanotube/SiO2 core–shell arrays for high photon extraction efficiency in III-nitride emitter. Nanotechnology 2017, 29, 15301. [Google Scholar] [CrossRef]
- Kim, K.-K.; Lee, S.-D.; Kim, H.; Park, J.-C.; Lee, S.-N.; Park, Y.; Park, S.-J.; Kim, S. Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution. Appl. Phys. Lett. 2009, 94, 071118. [Google Scholar]
- Park, Y.J.; Song, H.; Ko, K.B.; Ryu, B.D.; Cuong, T.V.; Hong, C.-H. Nanostructural Effect of ZnO on Light Extraction Efficiency of Near-Ultraviolet Light-Emitting Diodes. J. Nanomater. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.B.; Ng, L.Y.; Mohammad, A. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- ElAnzeery, H.; El Daif, O.; Buffiere, M.; Oueslati, S.; Ben Messaoud, K.; Agten, D.; Brammertz, G.; Guindi, R.; Kniknie, B.; Meuris, M.; et al. Refractive index extraction and thickness optimization of Cu2ZnSnSe4 thin film solar cells. Phys. Status Solidi (A) 2015, 212, 1984–1990. [Google Scholar] [CrossRef]
- Xi, J.-Q.; Schubert, M.F.; Kim, J.K.; Schubert, E.F.; Chen, M.; Lin, S.-Y.; Liu, W.; Smart, J.A.; Lončar, M. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon. 2007, 1, 176–179. [Google Scholar] [CrossRef]
- Chao, Y.-C.; Chen, C.-Y.; Lin, C.-A.; Dai, Y.-A.; He, J.-H. Antireflection effect of ZnO nanorod arrays. J. Mater. Chem. 2010, 20, 8134. [Google Scholar] [CrossRef]
- Tsai, D.-S.; Lin, C.-A.; Lien, W.-C.; Chang, H.-C.; Wang, Y.-L.; He, J.-H. Ultra-High-Responsivity Broadband Detection of Si Metal–Semiconductor–Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays. ACS Nano 2011, 5, 7748–7753. [Google Scholar] [CrossRef]
- Lei, P.-H.; Yang, C.-D.; Huang, P.-C.; Yeh, S.-J. Enhancement of Light Extraction Efficiency for InGaN/GaN Light-Emitting Diodes Using Silver Nanoparticle Embedded ZnO Thin Films. Micromachines 2019, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Leem, Y.-C.; Seo, O.; Jo, Y.-R.; Kim, J.H.; Chun, J.; Kim, B.-J.; Noh, D.Y.; Lim, W.; Kim, Y.-I.; Park, S.-J. Titanium oxide nanotube arrays for high light extraction efficiency of GaN-based vertical light-emitting diodes. Nanoscale 2016, 8, 10138–10144. [Google Scholar] [CrossRef]
- Mao, P.; Mahapatra, A.K.; Chen, J.; Chen, M.; Wang, G.; Han, M. Fabrication of Polystyrene/ZnO Micronano Hierarchical Structure Applied for Light Extraction of Light-Emitting Devices. ACS Appl. Mater. Interfaces 2015, 7, 19179–19188. [Google Scholar] [CrossRef]
- Ho, C.-H.; Hsiao, Y.-H.; Lien, D.-H.; Tsai, M.S.; Chang, D.; Lai, K.-Y.; Sun, C.-C.; He, J.-H. Enhanced light-extraction from hierarchical surfaces consisting of p-GaN microdomes and SiO2 nanorods for GaN-based light-emitting diodes. Appl. Phys. Lett. 2013, 103, 161104. [Google Scholar] [CrossRef] [Green Version]
- Leem, Y.; Park, J.S.; Kim, J.H.; Myoung, N.; Yim, S.-Y.; Jeong, S.; Lim, W. Light-Emitting Diodes: Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect (Small 2/2016). Small 2016, 12, 138. [Google Scholar] [CrossRef]
- Park, M.J.; Kim, C.U.; Kang, S.B.; Won, S.H.; Kwak, J.S.; Kim, C.-M.; Choi, K.J. 3D Hierarchical Indium Tin Oxide Nanotrees for Enhancement of Light Extraction in GaN-Based Light-Emitting Diodes. Adv. Opt. Mater. 2016, 5, 1600684. [Google Scholar] [CrossRef]
- Zhang, C.; Marvinney, C.E.; Xu, H.; Liu, W.Z.; Wang, C.L.; Zhang, L.X.; Wang, J.; Ma, J.G.; Liu, Y. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons. Nanoscale 2015, 7, 1073–1080. [Google Scholar] [CrossRef]
- Ko, S.H.; Lee, S.; Kang, H.W.; Nam, K.H.; Yeo, J.; Hong, S.J.; Grigoropoulos, C.P.; Sung, H.J. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett. 2011, 11, 666–671. [Google Scholar] [CrossRef]
- Ren, X.; Sangle, A.; Zhang, S.; Yuan, S.; Zhao, Y.; Shi, L.; Hoye, R.L.Z.; Cho, S.; Li, D.; MacManus-Driscoll, J.L. Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures. J. Mater. Chem. A 2016, 4, 10203–10211. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Li, X.; Sun, P.; Wang, B.; Liu, F.; Cheng, P.; Du, S.; Lu, G. Ordered ZnO nanorod array film driven by ultrasonic spray pyrolysis and its optical properties. Mater. Lett. 2013, 112, 36–38. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Liu, D.; Yao, S.; Liu, F.; Wang, B.; Sun, P.; Gao, Y.; Chuai, X.; Lu, G. Hierarchical core/shell ZnO/NiO nanoheterojunctions synthesized by ultrasonic spray pyrolysis and their gas-sensing performance. CrystEngComm 2016, 18, 8101–8107. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, L.; Ma, H.; Zhang, H.; Guo, L.H. Quantative Analysis of Reactive Oxygen Species Photogenerated on Metal Oxide Nanoparticles and Their Bacteria Toxicity: The Role of Superoxide Radicals. Environ. Sci. Technol. 2017, 51, 10137–10145. [Google Scholar] [CrossRef]
- Raut, H.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779. [Google Scholar] [CrossRef]
- Cho, C.-Y.; Kim, N.-Y.; Kang, J.-W.; Leem, Y.-C.; Hong, S.-H.; Lim, W.; Kim, S.-T.; Park, S.-J. Improved Light Extraction Efficiency in Blue Light-Emitting Diodes by SiO2-Coated ZnO Nanorod Arrays. Appl. Phys. Express 2013, 6, 042102. [Google Scholar] [CrossRef]
- Park, J.; Shin, D.S.; Kim, D.-H. Enhancement of light extraction in GaN-based light-emitting diodes by Al2O3-coated ZnO nanorod arrays. J. Alloy. Compd. 2014, 611, 157–160. [Google Scholar] [CrossRef]
- Moreno, I.; Araiza, J.D.J.; Avendaño-Alejo, M. Thin-film spatial filters. Opt. Lett. 2005, 30, 914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Shatalov, M.; Hu, X.; Yang, J.; Lunev, A.; Bilenko, Y.; Shur, M.S.; Gaska, R. Milliwatt Power 245 nm Deep Ultraviolet Light-Emitting Diodes; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2009; pp. 109–110. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-S.; Kwon, S.-H.; Choi, H.-J.; Im, K.-G.; Lee, H.; Oh, S.; Kim, K.-K. Self-Aligned Hierarchical ZnO Nanorod/NiO Nanosheet Arrays for High Photon Extraction Efficiency of GaN-Based Photonic Emitter. Micromachines 2020, 11, 346. https://doi.org/10.3390/mi11040346
Lee W-S, Kwon S-H, Choi H-J, Im K-G, Lee H, Oh S, Kim K-K. Self-Aligned Hierarchical ZnO Nanorod/NiO Nanosheet Arrays for High Photon Extraction Efficiency of GaN-Based Photonic Emitter. Micromachines. 2020; 11(4):346. https://doi.org/10.3390/mi11040346
Chicago/Turabian StyleLee, Won-Seok, Soon-Hwan Kwon, Hee-Jung Choi, Kwang-Gyun Im, Hannah Lee, Semi Oh, and Kyoung-Kook Kim. 2020. "Self-Aligned Hierarchical ZnO Nanorod/NiO Nanosheet Arrays for High Photon Extraction Efficiency of GaN-Based Photonic Emitter" Micromachines 11, no. 4: 346. https://doi.org/10.3390/mi11040346
APA StyleLee, W. -S., Kwon, S. -H., Choi, H. -J., Im, K. -G., Lee, H., Oh, S., & Kim, K. -K. (2020). Self-Aligned Hierarchical ZnO Nanorod/NiO Nanosheet Arrays for High Photon Extraction Efficiency of GaN-Based Photonic Emitter. Micromachines, 11(4), 346. https://doi.org/10.3390/mi11040346