A One-Dimensional Effective Model for Nanotransistors in Landauer–Büttiker Formalism
Abstract
:1. Introduction
2. Landauer–Büttiker Formula for Multi-Terminal Devices
3. Construction of the S-matrix with the R-matrix Method
4. Transistor Model
- P1
- The transistor is treated as two-terminal system.
- P2
- Axial contacts: For all the surface normal vectors are aligned so that . For our transistor model .
- P3
- Global separability (see Figure 2b): In a system with axial contacts in -direction the potential in the scattering area is the sum of a longitudinal potential varying in -direction and transverse potential varying in the two transverse directions. In the transistor model this separation is given in Equation (35).
- P4
- P5
- Planarity: For a planar device one can define one or two global transverse coordinates valid in all and in on which the potential does not depend. In our transistor model one global transverse coordinate exists which is the width-coordinate z.
- P7
- Single mode approximation: One assumes strong transverse quantization in the scattering area. Then splitting of the transverse quantum levels induced by is so strong that only the lowest transverse level has to be taken into account.
5. The R-matrix in a Separable Two-Terminal System
6. Effective Approximation and One-Dimensional Effective Scattering Problems
7. Planar Systems and Supply Functions
8. Single-Mode Approximation and One-Dimensional Effective Model
9. Summary
Funding
Conflicts of Interest
Appendix A. Derivation of the Formula for the Current
Appendix A.1. Current Contribution of a Single Scattering State
Appendix A.2. Summation Over Scattering States
Appendix B. Properties of the Wigner–Eisenbud Problem
- (1)
- Hermiticity:We take two functions and obeying the Wigner–Eisenbud boundary conditions Equations (15) and (16), i. e., with the Neumann boundary conditions and Dirichlet boundary condition . From second Green’s theorem it follows directly thatAs desired, one immediately obtains the hermicity condition
- (2)
- The Wigner–Eisenbud energies are real:The Wigner–Eisenbud functions are the eigenfunctions of H,
- (3)
- The Wigner–Eisenbud functions can be chosen real:Since the are real the complex conjugate of Equation (A26) is given byTherefore, if a complex function is a solution of Equation (A26) then is a solution too and one can choose instead of two real solutions and .
- (4)
- The Wigner–Eisenbud functions are orthogonal:For two Wigner–Eisenbud functions with different energies we writeSetting in Equation (A25) andFor degenerate Wigner–Eisenbud functions two orthogonal linear combinations can be constructed with standard methods.
- (5)
- Completeness:As described in (1) the operator H is hermitic, it is second order in the derivatives and linear. Then the set of its eigenfunctions , the Wigner–Eisenbud functions, is complete. Thus, with (3) and (4) the can be chosen as a complete, real, orthonormal function system.
Appendix C. Verification of Equation (49)
Appendix D. R-matrix Theory in One Dimension
Appendix E. Numerical Evaluation of the Transmission Coefficients in One Dimension
Appendix F. Derivation of the Supply Function
References
- Nemnes, G.A.; Wulf, U.; Racec, P.N. Nano-transistors in the Landauer-Büttiker formalism. J. Appl. Phys. 2004, 96, 596. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Wulf, U.; Racec, P.N. Nonlinear I-V characteristics of nanotransistors in the Landauer-Büttiker formalism. J. Appl. Phys. 2005, 98, 84308. [Google Scholar] [CrossRef]
- Wulf, U.; Richter, H. Scale-invariant drain current in nano-FETs. J. Nano Res. 2010, 10, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Wulf, U.; Richter, H. Scaling in quantum transport in silicon nano-transistors. Solid State Phenom. 2010, 10, 156–158. [Google Scholar] [CrossRef] [Green Version]
- Wulf, U.; Richter, H. Scaling properties of ballistic nano-transistors. Nanoscale Res. Lett. 2011, 6, 365. [Google Scholar] [CrossRef] [Green Version]
- Wulf, U.; Krahlisch, M.; Kučera, J.; Richter, H.; Höntschel, J. A quantitative model for quantum transport in nano-transistors. Nanosyst. Phys. Chem. Math. 2013, 4, 800–809. [Google Scholar]
- Wulf, U.; Kučera, J.; Richter, H.; Wiatr, M.; Höntschel, J. Characterization of nanotransistors in a semiempirical model. Thin Solid Films 2016, 613, 6–10. [Google Scholar] [CrossRef]
- Wulf, U.; Kučera, J.; Richter, H.; Horstmann, M.; Wiatr, M.; Höntschel, J. Channel Engineering for Nanotransistors in a Semiempirical Quantum Transport Model. Mathematics 2017, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, J. On the electrical resistance of contacts between solid conductors. Phys. Rev. 1930, 36, 1604. [Google Scholar] [CrossRef]
- Ehrenberg, W.; Hönl, H. Zur Theorie des elektrischen Kontakte. Zeitschrift für Phys. 1931, 68, 289. [Google Scholar] [CrossRef]
- Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop. 1957, 1, 223. [Google Scholar] [CrossRef]
- Landauer, R. Electrical transport in open and closed systems. Z. Phys. B 1987, 68, 217. [Google Scholar] [CrossRef]
- Tsu, R.; Esaki, L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973, 22, 562. [Google Scholar] [CrossRef]
- Fisher, D.S.; Lee, P.A. Relation between conductivity and transmission matrix. Phys. Rev. B 1981, 23, 6851. [Google Scholar] [CrossRef] [Green Version]
- Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207. [Google Scholar] [CrossRef] [Green Version]
- Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 1986, 57, 1761. [Google Scholar] [CrossRef]
- Büttiker, M. Symmetry of electrical conduction. IBM J. Res. Dev. 1988, 32, 317. [Google Scholar] [CrossRef]
- Sharvin, D.Y.; Sharvin, Y.V. Magnetic-flux quantization in a cylindrical film of a normal metal. JETP Lett. 1981, 34, 272. [Google Scholar]
- Roukes, M.L. Quenching of the Hall effect in a one-dimensional wire. Phys. Rev. Lett. 1987, 59, 3011. [Google Scholar] [CrossRef] [Green Version]
- Baranger, H.U.; Stone, A.D. Quenching of the Hall resistance in ballistic microstructures: A collimation effect. Phys. Rev. Lett. 1989, 63, 414. [Google Scholar] [CrossRef]
- van Wees, B.J.; van Houten, H.; Beenakker, C.W.J.; Williamson, J.G.; Kouwenhoven, L.P.; van der Marel, D.; Foxon, C.T. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 1988, 60, 848. [Google Scholar] [CrossRef] [Green Version]
- Wharam, D.A.; Thornton, T.H.; Newbury, R.; Pepper, M.; Ahmed, H.; Frost, J.E.F.; Hasko, D.G.; Peacock, D.C.; Ritchie, D.A.; Jones, G.A.C. One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C 1988, 21, L209. [Google Scholar] [CrossRef]
- Mizuta, H.; Tanoue, T. The Physics and Applications of Resonant Tunneling Diodes. In Cambridge Studies in Semiconductor Physics and Microelectronic Engineering 2; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Meirav, U.; Kastner, M.A.; Wind, S.J. Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 1990, 65, 771. [Google Scholar] [CrossRef] [PubMed]
- Meir, Y.; Wingreen, N.S.; Lee, P.A. Transport through a strongly interacting electron system: Theory of periodic conductance oscillations. Phys. Rev. Lett. 1991, 66, 3048. [Google Scholar] [CrossRef] [PubMed]
- Awschalom, D.D.; Loss, D.; Samarth, N. (Eds.) Semiconductor Spintronics and Quantum Computation; Springer: Berlin, Germany, 2002. [Google Scholar]
- Greilich, A.; Yakovlev, D.R.; Shabev, A.; Efros, A.L.; Yugova, I.A.; Oulton, R.; Stavarche, V.; Reuter, D.; Wieck, A.; Bayer, M. Mode locking of electron spin coherences in singly charged quantum dots. Science 2006, 313, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppens, F.H.L.; Buizert, C.; Tielrooij, K.J.; Nowack, K.C.; Meunier, T.; Kouwenhoven, L.P.; Vandersypen, L.M.K. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 2006, 442, 766. [Google Scholar] [CrossRef]
- Brown, R.H.; Twiss, R.Q. A new type of interferometer for use in radio astronomy. Philos. Mag. 1954, 45, 663–682. [Google Scholar] [CrossRef]
- Büttiker, M. Scattering theory of current and intensity noise correlations in conductors and wave guides. Phys. Rev. B 1992, 46, 12485. [Google Scholar] [CrossRef]
- Henny, M.; Oberholzer, S.; Strunk, C.; Heinzel, T.; Ensslin, K.; Holland, M.; Schönenberger, C. The fermionic hanbury brown and twiss experiment. Science 1999, 284, 296. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Webb, R.A. Positive Current Correlations Associated with Super-Poissonian Shot Noise. Phys. Rev. Lett. 2006, 97, 66064. [Google Scholar] [CrossRef]
- Lane, A.M.; Thomas, R.G. R-Matrix Theory of Nuclear Reactions. Rev. Mod. Phys. 1958, 30, 257. [Google Scholar] [CrossRef]
- Burke, P.G.; Berrington, K.A. (Eds.) Atomic and Molecular Processes: An R-matrix Approach; Institute of Physics Publishing: Bristol, UK, 1993. [Google Scholar]
- Kapur, P.L.; Peierls, R. The dispersion formula for nuclear reactions. Proc. Roy. Soc. (London) 1938, A166, 277. [Google Scholar]
- Smrčka, L. R-matrix and the coherent transport in mesoscopic systems. Superlattices Microstruct. 1990, 8, 221. [Google Scholar] [CrossRef]
- Wulf, U.; Kučera, J.; Racec, P.N.; Sigmund, E. Transport through quantum systems in the R-matrix formalism. Phys. Rev. B 1998, 58, 16209. [Google Scholar] [CrossRef]
- Onac, E.; Kučera, J.; Wulf, U. Vertical magnetotransport through a quantum dot in the R-matrix formalism. Phys. Rev. B 2001, 63, 85319. [Google Scholar] [CrossRef]
- Racec, E.R.; Wulf, U.; Racec, P.N. Fano regime of transport through open quantum dots. Phys. Rev. B 2010, 82, 85313. [Google Scholar] [CrossRef] [Green Version]
- Racec, E.R.; Wulf, U. Resonant quantum transport in semiconductor nanostructures. Phys. Rev. B 2001, 64, 115318. [Google Scholar] [CrossRef]
- Jayasekera, T.; Morrison, M.A.; Mullen, K. R-matrix theory for magnetotransport properties in semiconductor devices. Phys. Rev. B 2006, 74, 235308. [Google Scholar] [CrossRef] [Green Version]
- Mil’nikov, G.; Mori, N.; Kamakura, Y.; Ezaki, T. R-matrix theory of quantum transport and recursive propagation method for device simulations. J. Appl. Phys. 2008, 104, 044506. [Google Scholar] [CrossRef]
- Mil’nikov, G.; Mori, N.; Kamakura, Y. R-matrix method for quantum transport simulations in discrete systems. Phys. Rev. B 2009, 79. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Ion, L.; Antohe, S. Self-consistent potentials and linear regime conductance of cylindrical nanowire transistors in the R-matrix formalism. J. Appl. Phys. 2009, 106, 11371. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Manolescu, A.; Gudmundsson, V. Reduction of ballistic spin scattering in a spin-FET using stray electric fields. J. Phys. Conf. Sert 2012, 338, 012012. [Google Scholar] [CrossRef]
- Manolescu, A.; Nemnes, G.A.; Sitek, A.; Rosdahl, T.O.; Erlingsson, S.I.; Gudmundsson, V. Conductance oscillations of core-shell nanowires in transversal magnetic fields. Phys. Rev. B 2016, 93, 205445. [Google Scholar] [CrossRef] [Green Version]
- Mitran, T.; Nemnes, G.; Ion, L.; Dragoman, D. Ballistic electron transport in wrinkled superlattices. Phys. E 2016, 81, 131. [Google Scholar] [CrossRef] [Green Version]
- Nemnes, G.A.; Dragoman, D. Reconfigurable quantum logic gates using Rashba controlled spin polarized currents. Physica E 2019, 111, 13. [Google Scholar] [CrossRef]
- Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Stern, F. Self-Consistent Results for n-Type Si Inversion Layers. Phys. Rev. B 1972, 5, 4891. [Google Scholar] [CrossRef]
- Ando, T.; Fowler, A.B.; Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982, 54, 437. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wulf, U. A One-Dimensional Effective Model for Nanotransistors in Landauer–Büttiker Formalism. Micromachines 2020, 11, 359. https://doi.org/10.3390/mi11040359
Wulf U. A One-Dimensional Effective Model for Nanotransistors in Landauer–Büttiker Formalism. Micromachines. 2020; 11(4):359. https://doi.org/10.3390/mi11040359
Chicago/Turabian StyleWulf, Ulrich. 2020. "A One-Dimensional Effective Model for Nanotransistors in Landauer–Büttiker Formalism" Micromachines 11, no. 4: 359. https://doi.org/10.3390/mi11040359
APA StyleWulf, U. (2020). A One-Dimensional Effective Model for Nanotransistors in Landauer–Büttiker Formalism. Micromachines, 11(4), 359. https://doi.org/10.3390/mi11040359