MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion
Abstract
:1. Introduction
2. Fabrication Methods and Materials
3. Experimental Methods and Results
3.1. Quantifying the SAW Propulsion Force with a Simple Pendulum
3.2. Making Use of the SAW Propulsion Force Pendulum Method in Modeling and Measuring Acoustic Streaming
3.2.1. The Basic Theory Underpinning SAW-based Acoustic Streaming Propulsion
3.2.2. Measurements of the SAW-driven Acoustic Streaming Propulsion Force
3.3. Visualization of Acoustic Streaming Responsible for the SAW Propulsion Mechanism
3.4. Using the SAW Propulsion Force Measurement Method to Improve the Propulsion Efficiency of the SAW Device
3.4.1. Propulsion Force Measurement Using Three Specific SAW Device Designs
3.4.2. Model to Maximize the Propulsion Force Density: the Propulsion Force Per Unit Device Volume
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SAW | Surface acoustic wave |
IDT | Interdigital transducer |
LN | Lithium niobate |
PZT | Lead zirconate titanate |
Appendix A. Derivation of SAW Propulsion Force based on Pendulum Equilibrium
References
- Ridao, P.; Carreras, M.; Ribas, D.; Sanz, P.J.; Oliver, G. Intervention AUVs: The next challenge. Annu. Rev. Control 2015, 40, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV navigation and localization: A review. IEEE J. Ocean. Eng. 2013, 39, 131–149. [Google Scholar] [CrossRef]
- Carlton, J. Marine Propellers and Propulsion; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Blake, J.R.; Gibson, D.C. Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 1987, 19, 99–123. [Google Scholar] [CrossRef]
- Min, K.S.; Chang, B.J.; Seo, H.W. Study on the contra-rotating propeller system design and full-scale performance prediction method in rapid hull form generation. Int. J. Nav. Arch. Ocean 2009, 1, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, D.; Jin, J.; Wang, L. A novel underwater piezoelectric thruster with one single resonance mode. Rev. Sci. Instrum. 2019, 90, 045007. [Google Scholar] [CrossRef] [PubMed]
- Connacher, W.; Zhang, N.; Huang, A.; Mei, J.; Zhang, S.; Gopesh, T.; Friend, J. Micro/nano acoustofluidics: Materials, phenomena, design, devices, and applications. Lab Chip 2018, 18, 1952–1996. [Google Scholar] [CrossRef]
- Ding, X.; Li, P.; Lin, S.C.S.; Stratton, Z.S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzo, F. Surface acoustic wave microfluidics. Lab Chip 2013, 13, 3626–3649. [Google Scholar] [CrossRef]
- Friend, J.; Yeo, L.Y. Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 2011, 83, 647. [Google Scholar] [CrossRef] [Green Version]
- Eckart, C. Vortices and streams caused by sound waves. Phys. Rev. 1948, 73, 68. [Google Scholar] [CrossRef]
- Bradley, C.E. Acoustic streaming field structure: The influence of the radiator. J. Acoust. Soc. Am. 1996, 100, 1399–1408. [Google Scholar] [CrossRef]
- Lighthill, J. Acoustic streaming. J. Sound Vib. 1978, 61, 391–418. [Google Scholar] [CrossRef]
- Dentry, M.B.; Yeo, L.Y.; Friend, J.R. Frequency effects on the scale and behavior of acoustic streaming. Phys. Rev. E 2014, 89, 013203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourquin, Y.; Cooper, J.M. Swimming using surface acoustic waves. PLoS ONE 2013, 8, e42686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, T.; Friend, J.; Nakamura, K.; Ueha, S. Characteristics of ultrasonic suction pump without moving parts. Jpn. J. Appl. Phys. 2005, 44, 4658. [Google Scholar] [CrossRef]
- Langelier, S.; Yeo, L.; Friend, J.R. UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration. Lab Chip 2012, 12, 2970–2976. [Google Scholar] [CrossRef] [Green Version]
- Miansari, M.; Friend, J.R. Acoustic nanofluidics via room-temperature lithium niobate bonding: A platform for actuation and manipulation of nanoconfined fluids and particles. Adv. Funct. Mater. 2016, 26, 7861–7872. [Google Scholar] [CrossRef]
- Zhang, N.; Friend, J. Fabrication of nanoheight channels incorporating surface acoustic wave actuation via lithium niobate for acoustic nanofluidics. J. Vis. Exp. 2020, 156. [Google Scholar] [CrossRef]
- Cheng, N.S. Formula for the viscosity of a glycerol- water mixture. Ind. Eng. Chem. Res. 2008, 47, 3285–3288. [Google Scholar] [CrossRef]
- Shankar, P.; Kumar, M. Experimental determination of the kinematic viscosity of glycerol-water mixtures. Proc. R. Soc. A Math. Phys. 1994, 444, 573–581. [Google Scholar]
- Segur, J.B.; Oberstar, H.E. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 1951, 43, 2117–2120. [Google Scholar] [CrossRef]
- Fergusson, F.; Guptill, E.; MacDonald, A. Velocity of sound in glycerol. J. Acoust. Soc. Am. 1954, 26, 67–69. [Google Scholar] [CrossRef]
- Negadi, L.; Feddal-Benabed, B.; Bahadur, I.; Saab, J.; Zaoui-Djelloul-Daouadji, M.; Ramjugernath, D.; Negadi, A. Effect of temperature on density, sound velocity, and their derived properties for the binary systems glycerol with water or alcohols. J. Chem. Thermodyn. 2017, 109, 124–136. [Google Scholar] [CrossRef]
- Bertram, V. Chapter 2—Propellers. In Practical Ship Hydrodynamics, 2nd ed.; Bertram, V., Ed.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 41–72. [Google Scholar]
- Petrescu, R.V.; Aversa, R.; Akash, B.; Bucinell, R.; Corchado, J.; Apicella, A.; Petrescu, F.I. Modern propulsions for aerospace-a review. J. Aircr. Spacecr. Technol. 2017, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nowicki, A.; Kowalewski, T.; Secomski, W.; Wójcik, J. Estimation of acoustical streaming: Theoretical model, Doppler measurements and optical visualisation. Eur. J. Ultrasound 1998, 7, 73–81. [Google Scholar] [CrossRef]
- Slobodnik, A.J. Surface acoustic waves and SAW materials. Proc. IEEE 1976, 64, 581–595. [Google Scholar] [CrossRef]
- Allison, E.M.; Springer, G.S.; Van Dam, J. Ultrasonic propulsion. J. Propul. Power 2008, 24, 547–553. [Google Scholar] [CrossRef]
- Tan, A.; Hover, F. Thrust and wake characterization in small, robust ultrasonic thrusters. In Proceedings of the Oceans 2010 MTS/IEEE Seattle, Seattle, WA, USA, 20–23 September 2010. [Google Scholar]
- Duelley, R.S. Autonomous underwater Vehicle Propulsion Design. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2010. [Google Scholar]
W | a | l | L | |
---|---|---|---|---|
1 | 11.85 | 4.50 | 9.00 | 5.00 |
2 | 5.65 | 4.50 | 4.55 | 3.00 |
3 | 3.70 | 0.38 | 3.00 | 3.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Wen, Y.; Friend, J. MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion. Micromachines 2020, 11, 419. https://doi.org/10.3390/mi11040419
Zhang N, Wen Y, Friend J. MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion. Micromachines. 2020; 11(4):419. https://doi.org/10.3390/mi11040419
Chicago/Turabian StyleZhang, Naiqing, Yue Wen, and James Friend. 2020. "MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion" Micromachines 11, no. 4: 419. https://doi.org/10.3390/mi11040419
APA StyleZhang, N., Wen, Y., & Friend, J. (2020). MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion. Micromachines, 11(4), 419. https://doi.org/10.3390/mi11040419