Acoustic Streaming Generated by Sharp Edges: The Coupled Influences of Liquid Viscosity and Acoustic Frequency
Abstract
:1. Introduction
2. Experimental Setup
2.1. Microchannel and Acoustic Wave
2.2. Flow Visualisation and Image Processing
3. Influence of Viscosity
3.1. Velocity and Vorticity Maps
3.2. Maximal Streaming Velocity at Different Viscosities
4. Influence of Frequency
4.1. Velocity and Vorticity Maps
4.2. Maximal Velocity at Different Frequencies
- -
- One group rather concerns measurements obtained at higher frequencies (2500 and 3500 Hz) and high , for which a good fit is obtained for a value = 5×10 s/mm.
- -
- The other group is constituted by measurements obtained at lower frequencies (500, 800 and 1250 Hz) and relatively low ; see insert in Figure 10. In this case, the value of the prefactor is = 0.0011 s/mm.
- -
- Figure 11a: the plot of versus shows a good collapse of data for the three lowest frequency values (500, 800 and 1250 Hz). But the rescaling does not fit with the two other data sets corresponding to the highest frequencies (2500 and 3500 Hz).
- -
- Figure 11b: the plot of versus shows a fair collapse of data for all frequencies, though it is more convincing at higher acoustic amplitude.
5. Conclusions
- -
- For any conditions, the maximal streaming velocity is roughly located at a vertical distance of from the tip; i.e., just at the limit of the VBL.
- -
- An increase of viscosity leads to globally weaken the streaming velocity and the outer vorticity. Still, the outer vortices keep their size and shape for all liquids, and the thickness of the inner flow along the edge lateral walls roughly remains insensitive to viscosity. This is clearly at odds from what is observed in classical boundary-layer (Rayleigh–Schlichting) streaming.
- -
- At constant , a decrease of frequency tends to increase the streaming velocity. Our results, although unexplained by the current theoretical state of the art, suggests the empirical law: . Furthermore, the lower the frequency f is, the more spread out the streaming vortices are.
- -
- While the flow near the tip () is strongly influenced by and f, the flow far from the tip follows an exponential decrease over a length scale of roughly 130 m, under the test condition and with angle of 60, and tip height h = 180 m. This length characterises the disturbance distance and seems to be dependent only on the sharp edge structure rather than the operating conditions.
- -
- When the VBL thickness is comparable to the channel depth, i.e., when is of the order one, the dependence of on is no longer linear. It suggests that 1 is a necessary condition for this linearity, as otherwise the streaming flow cannot fully develop within the channel.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
VBL | Viscous boundary layer |
References
- Westervelt, P.J. The Theory of Steady Rotational Flow Generated by a Sound Field. J. Acoust. Soc. Am. 1953, 25, 60–67. [Google Scholar] [CrossRef]
- Nyborg, W.L. Acoustic Streaming due to Attenuated Plane Waves. J. Acoust. Soc. Am. 1953, 25, 68–75. [Google Scholar] [CrossRef]
- Lighthill, S.J. Acoustic Streaming. J. Sound Vib. 1978, 61, 391–418. [Google Scholar] [CrossRef]
- Friend, J.; Yeo, L.Y. Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 2011, 83, 647. [Google Scholar] [CrossRef] [Green Version]
- Eckart, C. Vortices and streams caused by sound waves. Phys. Rev. 1948, 73, 68–76. [Google Scholar] [CrossRef]
- Rayleigh, L. On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. 1884, 175, 1–21. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer Nature: Berlin, Germany, 2017. [Google Scholar]
- Nyborg, W.L. Acoustic Streaming near a Boundary. J. Acoust. Soc. Am. 1958, 30, 329–339. [Google Scholar] [CrossRef]
- Riley, N. Acoustic Streaming; Springer: Boston, MA, USA, 1998; Volume 10, pp. 349–356. [Google Scholar] [CrossRef]
- Rayleigh, L. The Theory of Sound, Volume One; Dover Publications: New York, NY, USA, 1945; p. 985. [Google Scholar]
- Faraday, M. On a Peculiar Class of Acoustical Figures; and on Certain Forms Assumed by Groups of Particles upon Vibrating Elastic Surfaces. Philos. Trans. R. Soc. Lond. 1831, 121, 299–340. [Google Scholar] [CrossRef]
- Sritharan, K.; Strobl, C.J.; Schneider, M.F.; Wixforth, A. Acoustic mixing at low Reynold’s numbers. Appl. Phys. Lett. 2006, 88, 054102. [Google Scholar] [CrossRef]
- Franke, T.; Braunmuller, S.; Schmid, L.; Wixforth, A.; Weitz, D.A. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 2010, 10, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Lenshof, A.; Magnusson, C.; Laurell, T. Acoustofluidics 8: Applications ofacoustophoresis in continuous flowmicrosystems. Lab Chip 2012, 12, 1210. [Google Scholar] [CrossRef] [PubMed]
- Sadhal, S.S. Acoustofluidics 15: Streaming with sound waves interacting with solid particles. Lab Chip 2012, 12, 2600. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.B.; Rossi, M.; Marin, A.G.; Barnkop, R.; Augustsson, P.; Laurell, T.; Kahler, C.J.; Bruus, H. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys. Rev. E 2013, 88, 023006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skov, N.R.; Sehgal, P.; Kirby, B.J.; Bruus, H. Three-Dimensional Numerical Modeling of Surface-Acoustic-Wave Devices: Acoustophoresis of Micro-and Nanoparticles Including Streaming. Phys. Rev. Appl. 2019, 12, 044028. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Karlsen, J.T.; Bruus, H.; Augustsson, P. Experimental Characterization of Acoustic Streaming in Gradients of Density and Compressibility. Phys. Rev. Appl. 2019, 11, 024018. [Google Scholar] [CrossRef] [Green Version]
- Voth, G.A.; Bigger, B.; Buckley, M.R.; Losert, W.; Brenner, M.P.; Stone, H.A.; Gollub, J.P. Ordered clusters and dynamical states of particles in a vibrated fluid. Phys. Rev. Lett. 2002, 88, 234301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuillermet, G.; Gires, P.Y.; Casset, F.; Poulain, C. Chladni Patterns in a Liquid at Microscale. Phys. Rev. Lett 2016, 116, 184501. [Google Scholar] [CrossRef] [Green Version]
- Legay, M.; Simony, B.; Boldo, P.; Gondrexon, N.; Le Person, S.; Bontemps, A. Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger. Ultrason. Sonochem. 2012, 19, 1194–1200. [Google Scholar] [CrossRef]
- Loh, B.G.; Hyun, S.; Ro, P.I.; Kleinstreuer, C. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer. J. Acoust. Soc. Am. 2002, 111, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Kamakura, T.; Sudo, T.; Matsuda, K.; Kumamoto, Y. Time evolution of acoustic streaming from a planar ultrasound source. J. Acoust. Soc. Am. 1996, 100, 132–138. [Google Scholar] [CrossRef]
- Brunet, P.; Baudoin, M.; Bou Matar, O.; Zoueshtiagh, F. Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: A quantitative study. Phys. Rev. E 2010, 81, 036315. [Google Scholar] [CrossRef] [Green Version]
- Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.; Garandet, J.P. Scaling and dimensional analysis of acoustic streaming jets. Phys. Fluids 2014, 26, 093602. [Google Scholar] [CrossRef] [Green Version]
- Da Costa Andrade, E.N. On the circulations caused by the vibration of air in a tube. Proc. R. Soc. 1931, 134, 445. [Google Scholar]
- Valverde, J.M. Pattern-formation under acoustic driving forces. Contemp. Phys. 2015, 56, 338–358. [Google Scholar] [CrossRef]
- Hamilton, M.F.; Ilinskii, Y.A.; Zabolotskaya, E. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J. Acoust. Soc. Am. 2002, 113, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, M.; Green, R.; Ohlin, M. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip 2012, 12, 2438. [Google Scholar] [CrossRef]
- Huang, P.H.; Xie, Y.; Ahmed, D.; Rufo, J.; Nama, N.; Chen, Y.; Chan, C.Y.; Huang, T.J. An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip 2013, 13, 3847–3852. [Google Scholar] [CrossRef]
- Huang, P.H.; Nama, N.; Mao, Z.; Li, P.; Rufo, J.; Chen, Y.; Xie, Y.; Wei, C.H.; Wang, L.; Huang, T.J. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 2014, 14, 4319–4323. [Google Scholar] [CrossRef] [Green Version]
- Nama, N.; Huang, P.H.; Huang, T.J.; Costanzo, F. Investigation of acoustic streaming patterns around oscillating sharp edges. Lab Chip 2014, 14, 2824–2836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nama, N.; Huang, P.H.; Huang, T.J.; Costanzo, F. Investigation of micromixing by acoustically oscillated sharp-edges. Biomicrofluidics 2016, 10, 024124. [Google Scholar] [CrossRef]
- Doinikov, A.A.; Gerlt, M.S.; Pavlic, A.; Dual, J. Acoustic streaming produced by sharp-edge structures in microfluidic devices. Microfluid. Nanofluid. 2020, 24, 32. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, X.; Brunet, P.; Costalonga, M.; Royon, L. Acoustic streaming near a sharp structure and its mixing performance characterization. Microfluid. Nanofluid. 2019, 23, 104. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, X.; Royon, L.; Brunet, P. Unveiling of the mechanisms of acoustic streaming induced by sharp edges. arXiv 2020, arXiv:2003.01208. [Google Scholar]
- Ovchinnikov, M.; Zhou, J.; Yalamanchili, S. Acoustic streaming of a sharp edge. J. Acoust. Soc. Am. 2014, 136, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.H.; Chan, C.Y.; Li, P.; Wang, Y.; Nama, N.; Bachman, H.; Huang, T.J. A sharp-edge-based acoustofluidic chemical signal generator. Lab Chip 2018, 18, 1411–1421. [Google Scholar] [CrossRef]
- Leibacher, I.; Hahn, P.; Dual, J. Acoustophoretic cell and particle trapping on microfluidic sharp edges. Microfluid. Nanofluid. 2015, 19, 923–933. [Google Scholar] [CrossRef]
- Cao, Z.; Lu, C. A Microfluidic Device with Integrated Sonication and Immunoprecipitation for Sensitive Epigenetic Assays. Anal. Chem. 2016, 88, 1965–1972. [Google Scholar] [CrossRef] [Green Version]
- Bachman, H.; Huang, P.H.; Zhao, S.; Yang, S.; Zhang, P.; Fu, H.; Huang, T.J. Acoustofluidic devices controlled by cell phones. Lab Chip 2018, 18, 433–441. [Google Scholar] [CrossRef]
- Costalonga, M.; Brunet, P.; Peerhossaini, H. Low frequency vibration induced streaming in a Hele-Shaw cell. Phys. Fluids 2015, 27, 013101. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.S. Formula for the viscosity of a glycerol-water mixture. Ind. Eng. Chem. Res. 2008, 47, 3285–3288. [Google Scholar] [CrossRef]
- Slie, W.M.; Donfor, A.R.; Litovitz, T.A. Ultrasonic shear and longitudinal measurements in aqueous glycerol. J. Chem. Phys. 1966, 44, 3712–3718. [Google Scholar] [CrossRef]
- Bahrani, S.; Perinet, N.; Costalonga, M.; Royon, L.; Brunet, P. Vortex elongation in outer streaming flows. Exp. Fluids 2020, 61, 91. [Google Scholar] [CrossRef] [Green Version]
Quantity | Abbreviation |
---|---|
Kinematic viscosity | |
Viscous boundary layer thickness | |
Tip angle of sharp edge | |
Height of the sharp edge | h |
Radius of curvature of the tip | |
Width of the microchannel | w |
Depth of the microchannel | p |
Acoustic frequency | f |
Acoustic angular frequency | |
Amplitude of acoustic displacement | A |
Amplitude of acoustic velocity | |
Amplitude of acoustic velocity far from the tip | |
Streaming velocity | |
Maximum streaming velocity | |
Fitting coefficient relating and |
(mm/s) | (m/s) | (kg/m) | (m) | (m) | ||
---|---|---|---|---|---|---|
0.00 | 0.00 | 1.007 | 1510 | 998 | 9.57 | 25.3 |
0.062 | 0.05 | 1.158 | 1580 | 1012,7 | 10.3 | 27.1 |
0.457 | 0.4 | 4.32 | 1760 | 1114.5 | 19.8 | 52.4 |
0.654 | 0.6 | 13.75 | 1810 | 1168.3 | 35.4 | 93.6 |
0.747 | 0.7 | 29.44 | 1840 | 1193.4 | 51.7 | 136.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Guo, X.; Royon, L.; Brunet, P. Acoustic Streaming Generated by Sharp Edges: The Coupled Influences of Liquid Viscosity and Acoustic Frequency. Micromachines 2020, 11, 607. https://doi.org/10.3390/mi11060607
Zhang C, Guo X, Royon L, Brunet P. Acoustic Streaming Generated by Sharp Edges: The Coupled Influences of Liquid Viscosity and Acoustic Frequency. Micromachines. 2020; 11(6):607. https://doi.org/10.3390/mi11060607
Chicago/Turabian StyleZhang, Chuanyu, Xiaofeng Guo, Laurent Royon, and Philippe Brunet. 2020. "Acoustic Streaming Generated by Sharp Edges: The Coupled Influences of Liquid Viscosity and Acoustic Frequency" Micromachines 11, no. 6: 607. https://doi.org/10.3390/mi11060607
APA StyleZhang, C., Guo, X., Royon, L., & Brunet, P. (2020). Acoustic Streaming Generated by Sharp Edges: The Coupled Influences of Liquid Viscosity and Acoustic Frequency. Micromachines, 11(6), 607. https://doi.org/10.3390/mi11060607