Driving Waveform Design of Electrophoretic Display Based on Optimized Particle Activation for a Rapid Response Speed
Abstract
:1. Introduction
2. System Design Principle
2.1. Display Principle
2.2. Design Principles for Driving Waveforms
3. Design of the Activation Phase in Driving Waveforms
3.1. Response Time Characteristics of the Improving Particle Activity Phase
3.2. Response Time Characteristics of the Uniform Reference Grayscale Phase
3.3. Four-Level Grayscale Driving Waveform Design
4. Experimental Results and Discussion
4.1. Testing System
4.2. Timing Comparison of Driving Waveforms
4.3. Performance Testing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meng, X.; Wen, T.; Qiang, L.; Ren, J.; Tang, F. Luminescent electrophoretic particles via miniemulsion polymerization fornight-vision electrophoretic displays. ACS Appl. Mater. Interfaces 2013, 5, 3638–3642. [Google Scholar] [CrossRef] [PubMed]
- Hertel, D.; Penczek, J. Predicting the viewing direction performance of e-paper displays with front light under ambient lighting conditions. J. Soc. Inf. Disp. 2015, 23, 510–522. [Google Scholar] [CrossRef]
- Kao, W.C.; Wu, G.F.; Shih, Y.L. Design of real-time image processing engine for electrophoretic displays. In Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 9–12 January 2011. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Drzaic, P.; Yeo, J.S.; Koch, T. A critical review of the present and future prospects for electronic paper. J. Soc. Inf. Disp. 2011, 19, 129–156. [Google Scholar] [CrossRef] [Green Version]
- Jablonski, C.; Grundler, G.; Pieles, U.; Stebler, S.; Oehrlein, R.; Szamel, Z. Synthesis and electrophoretic properties of novel Nanoparticles for coloredElectronic ink and e-paper applications. Chimia 2016, 70, 366–368. [Google Scholar] [CrossRef]
- Kao, W.C. Electrophoretic display controller integrated with real-time halftoning and partial region update. J. Disp. Technol. 2010, 6, 36–44. [Google Scholar] [CrossRef]
- Kao, W.C.; Chen, H.; Liu, Y.; Liou, S. Hardware engine for supporting gray-tone paintbrush function on electrophoretic papers. J. Disp. Technol. 2014, 10, 138–145. [Google Scholar] [CrossRef]
- Li, W.C.; Keh, H.J. Electrophoretic mobility of charged porous shells or microcapsules and electric conductivity of their dilute suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 497, 154–166. [Google Scholar] [CrossRef]
- Kao, W.C.; Liu, C.H. Real-time video signal processor for electrophoretic displays. In Proceedings of the 2014 IEEE International Conference on Consumer Electronics—Taiwan (ICCE-TW), Taipei, Taiwan, 26–28 May 2014. [Google Scholar] [CrossRef]
- Wang, L.; Yi, Z.C.; Peng, B.; Zhou, G. An improved driving waveform reference grayscale of electrophoretic displays. In Proceedings of the AOPC 2015: Advanced Display Technology; and Micro/Nano Optical Imaging Technologies and Applications, Beijing, China, 15 October 2015. [Google Scholar] [CrossRef]
- Yang, S.H.; Lin, F.C.; Huang, Y.P.; Al, E. Ghosting reduction driving method in electrophoretic displays. Sid Symp. Dig. Tech. Pap. 2012, 43, 1361–1364. [Google Scholar] [CrossRef]
- Qian, Y.; Bai, P.; Zhou, G. Driving waveform optimization based on electrophoretic displays. Appl. Electron. Tech. 2016, 42, 33–35. [Google Scholar] [CrossRef]
- Johnson, M.T.; Zhou, G.; Zehner, R.; Amundson, K.; Kamer, J.V.D. High-quality images on electrophoretic displays. J. Soc. Inf. Disp. 2006, 14, 175–180. [Google Scholar] [CrossRef]
- Yi, Z.C.; Bai, P.F.; Wang, L. An electrophoretic display driving waveform based on improvement of activation pattern. J. Cent. South Univ. 2014, 21, 3133–3137. [Google Scholar] [CrossRef]
- Kao, W.C.; Chang, W.P.; Ye, J.A. Driving waveform design based on response latency analysis of electrophoretic displays. J. Disp. Technol. 2012, 8, 596–601. [Google Scholar] [CrossRef]
- Shen, S.T.; Gong, Y.X.; Jin, M.L.; Yan, Z.; Xu, C.; Yi, Z.; Zhou, G.; Shui, L. Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design. Micromachines 2018, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yi, Z.C.; Jin, M.L.; Shui, L.; Zhou, G. Improvement of video playback performance of electrophoretic displays by optimized waveforms with shortened refresh time. Displays 2017, 49, 95–100. [Google Scholar] [CrossRef]
- Kao, W.C.; Liu, C.H.; Liou, S.C.; Tsai, J.C.; Hou, G.H. Towards video display on electronic papers. J. Disp. Technol. 2017, 12, 129–135. [Google Scholar] [CrossRef]
- Lu, C.M.; Wey, C.L. A controller design for micro-capsule active matrix electrophoretic displays. J. Disp. Technol. 2011, 7, 434–442. [Google Scholar] [CrossRef]
- Comiskey, B.; Albert, J.D.; Yoshizawa, H.; Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1996, 394, 253–255. [Google Scholar] [CrossRef]
- Pesce, G.; Rusciano, G.; Zito, G.; Sasso, A. Simultaneous measurements of electrophoretic and dielectrophoretic forces using optical tweezers. Opt. Express 2015, 23, 9363. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, Z. The key technology of ereader based on electrophoretic display. In Proceedings of the 2010 2nd International Conference on Software Technology and Engineering, San Juan, PR, USA, 3–5 October 2010. [Google Scholar] [CrossRef]
- Kao, W.C.; Liu, S.C.; Chang, W.T. Signal processing for playing videos on electrophoretic displays. In Proceedings of the Circuits and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium on, Boise, ID, USA, 5–8 August 2012. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, W.B. Developments of microcapsule electrophoretic display. Vac. Electron. 2012, 54–59. [Google Scholar] [CrossRef]
- Yu, D.; An, J.H.; Bae, J.Y.; Jung, D.; Kim, S.; Ahn, S.D.; Kang, S.; Suh, K.S. Preparation and characterization of acrylic-based electronic inks by in situ emulsifier-free emulsion polymerization for electrophoretic displays. Chem. Mater. 2004, 16, 4693–4698. [Google Scholar] [CrossRef]
- Bert, T.; De Smet, H. Dielectrophoresis in electronic paper. Displays 2003, 24, 223–230. [Google Scholar] [CrossRef]
- Yang, B.R. Overview of design considerations for electrophoretic e-paper and strategies for achieving full-color. In Proceedings of the 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 6–8 July 2016. [Google Scholar] [CrossRef]
- Feng, G.; Gormish, M.J. Ghosting reduction using digital halftoning for electrophoretic displays. Sid Symp. Dig. Tech. Pap. 2012, 39, 697–700. [Google Scholar] [CrossRef]
- Kao, W.C.; Ye, J.A.; Lin, F.S.; Lin, C.; Sprague, R. Configurable timing controller design for active matrix electrophoretic display with 16 gray levels. IEEE Trans. Consum. Electron. 2009, 55, 1–5. [Google Scholar] [CrossRef]
- Kao, W.C.; Tsai, J.C. Driving method of three-particle electrophoretic displays. IEEE Trans. Electron Devices 2018, 65, 1023–1028. [Google Scholar] [CrossRef]
- Kao, W.C.; Liu, J.J.; Chu, M. Integrating photometric calibration with adaptive image halftoning for electrophoretic displays. J. Disp. Technol. 2010, 6, 625–632. [Google Scholar] [CrossRef]
- Kao, W.C.; Liu, J.J.; Chu, M.I.; Wang, Y.K.; Yang, T.H. Photometric calibration for image enhancement of electrophoretic displays. In Proceedings of the IEEE International Symposium on Consumer Electronics (ISCE 2010), Braunschweig, Germany, 26 July 2010. [Google Scholar] [CrossRef]
T1 Durations | 40 ms | 45 ms | 50 ms | 55 ms | 60 ms | Conventional Waveform |
---|---|---|---|---|---|---|
Time for reaching reference grayscale (ms) | 120 | 120 | 120 | 120 | 120 | 220 |
Initial brightness values (nits) | 33.93 | 32.81 | 31.79 | 30.66 | 28.13 | 19.85 |
Image Type | Entropy | Change Rate of Entropy (%) | Gray Value | Change Rate of Gray Value (%) |
---|---|---|---|---|
Original image | 5.71 | – | 44.98 × 107 | – |
Proposed driving waveform | 5.35 | −6.30 | 9.13 × 107 | −79.70 |
Conventional driving waveform | 5.38 | −5.78 | 9.30 × 107 | −79.32 |
Waveform Type | Intensity of the First Flicker (nits) | Intensity of the Second Flicker (nits) | Total |
---|---|---|---|
Conventional driving waveform | 48.3 | 49.6 | 97.3 |
Proposed driving waveform | 34.4 | 37.4 | 41.8 |
Reduction rate of flicker intensity (%) | 28.8 | 24.6 | 26.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Yi, Z.; Shen, S.; Huang, Z.; Liu, L.; Zhang, T.; Li, W.; Wang, L.; Shui, L.; Zhang, C.; et al. Driving Waveform Design of Electrophoretic Display Based on Optimized Particle Activation for a Rapid Response Speed. Micromachines 2020, 11, 498. https://doi.org/10.3390/mi11050498
He W, Yi Z, Shen S, Huang Z, Liu L, Zhang T, Li W, Wang L, Shui L, Zhang C, et al. Driving Waveform Design of Electrophoretic Display Based on Optimized Particle Activation for a Rapid Response Speed. Micromachines. 2020; 11(5):498. https://doi.org/10.3390/mi11050498
Chicago/Turabian StyleHe, Wenyao, Zichuan Yi, Shitao Shen, Zhenyu Huang, Linwei Liu, Taiyuan Zhang, Wei Li, Li Wang, Lingling Shui, Chongfu Zhang, and et al. 2020. "Driving Waveform Design of Electrophoretic Display Based on Optimized Particle Activation for a Rapid Response Speed" Micromachines 11, no. 5: 498. https://doi.org/10.3390/mi11050498
APA StyleHe, W., Yi, Z., Shen, S., Huang, Z., Liu, L., Zhang, T., Li, W., Wang, L., Shui, L., Zhang, C., & Zhou, G. (2020). Driving Waveform Design of Electrophoretic Display Based on Optimized Particle Activation for a Rapid Response Speed. Micromachines, 11(5), 498. https://doi.org/10.3390/mi11050498