Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell In Vitro Recordings
Abstract
:1. Introduction
2. Materials and Methods
2.1. MEA Design and Fabrication
2.2. Technical Characterization
2.3. Cell Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stett, A.; Egert, U.; Guenther, E.; Hofmann, F.; Meyer, T.; Nisch, W.; Haemmerle, H. Biological application of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem. 2003, 377, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Defranchi, E.; Novellino, A.; Whelan, M.; Vogel, S.; Ramirez, T.; Van Ravenzwaay, B.; Landsiedel, R. Feasibility Assessment of Micro-Electrode Chip Assay as a Method of Detecting Neurotoxicity in vitro. Front. Neuroeng. 2011, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahti, A.L.; Kujala, V.J.; Chapman, H.; Koivisto, A.-P.; Pekkanen-Mattila, M.; Kerkela, E.; Hyttinen, J.; Kontula, K.; Swan, H.; Conklin, B.R.; et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis. Model. Mech. 2012, 5, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Ylä-Outinen, L.; Heikkilä, J.; Skottman, H.; Suuronen, R.; Aänismaa, R.; Narkilahti, S. Human cell-based micro electrode array platform for studying neurotoxicity. Front. Neuroeng. 2010, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Scharnhorst, K.S.; Stieg, A.Z.; Gimzewski, J.K.; Minami, I.; Nakatsuji, N.; Nakano, H.; Nakano, A. Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system. Sci. Rep. 2017, 7, 43210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichler, M.; Jahnke, H.G.; Krinke, D.; Müller, A.; Schmidt, S.; Azendorf, R.; Robitzki, A.A. A novel 96-well multielectrode array based impedimetric monitoring platform for comparative drug efficacy analysis on 2D and 3D brain tumor cultures. Biosens. Bioelectron. 2015, 67, 582–589. [Google Scholar] [CrossRef]
- Hammack, A.; Rihani, R.T.; Black, B.J.; Pancrazio, J.J.; Gnade, B.E. A patterned polystyrene-based microelectrode array for in vitro neuronal recordings. Biomed. Microdevices 2018, 20, 48. [Google Scholar] [CrossRef]
- Tang, R.Y.; Pei, W.H.; Chen, S.Y.; Zhao, H.; Chen, Y.F.; Han, Y.; Wang, C.L.; Chen, H.D. Fabrication of strongly adherent platinum black coatings on microelectrodes array. Sci. China Inf. Sci. 2014, 57, 1–10. [Google Scholar] [CrossRef]
- Gross, G.W.; Wen, W.Y.; Lin, J.W. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures. J. Neurosci. Methods 1985, 15, 243–252. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, G.H.; Baek, N.S.; Han, Y.H.; Kim, A.-Y.; Chung, M.-A.; Jung, S.-D. Fabrication of multi-electrode array platforms for neuronal interfacing with bi-layer lift-off resist sputter deposition. J. Micromech. Microeng. 2013, 23, 097001. [Google Scholar] [CrossRef]
- Nam, Y.; Musick, K.; Wheeler, B.C. Application of a PDMS microstencil as a replaceable insulator toward a single-use planar microelectrode array. Biomed. Microdevices 2006, 8, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Oka, H.; Shimono, K.; Ogawa, R.; Sugihara, H.; Taketani, M. A new planar multielectrode array for extracellular recording: Application to hippocampal acute slice. J. Neurosci. Methods 1999, 93, 61–67. [Google Scholar] [CrossRef]
- Janders, M.; Egert, U.; Stelzle, M.; Nisch, W. Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. In Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1996), Amsterdam, The Netherlands, 31 October–3 November 1996; pp. 245–247. [Google Scholar]
- Ryynänen, T.; Pelkonen, A.; Grigoras, K.; Ylivaara, O.M.E.; Hyvärinen, T.; Ahopelto, J.; Prunnila, M.; Narkilahti, S.; Lekkala, J. Microelectrode Array With Transparent ALD TiN Electrodes. Front. Neurosci. 2019, 13, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mierzejewski, M.; Kshirsagar, P.; Kraushaar, U.; Heusel, G.; Samba, R.; Jones, P.D. Bringing transparent microelectrodes to market: Evaluation for production and real-world applications. In Proceedings of the Front. Cell. Neurosci. Conference Abstract: MEA Meeting 2018 | 11th International Meeting on Substrate Integrated Microelectrode Arrays, Reutlingen, Germany, 4–6 July 2018. [Google Scholar]
- Kireev, D.; Seyock, S.; Lewen, J.; Maybeck, V.; Wolfrum, B.; Offenhäusser, A. Graphene Multielectrode Arrays as a Versatile Tool for Extracellular Measurements. Adv. Healthc. Mater. 2017, 6, 1601433. [Google Scholar] [CrossRef] [PubMed]
- Koerbitzer, B.; Krauss, P.; Nick, C.; Yadav, S.; Schneider, J.J.; Thielemann, C. Graphene electrodes for stimulation of neuronal cells. 2D Mater. 2016, 3, 024004. [Google Scholar] [CrossRef]
- Granado, T.C.; Neusser, G.; Kranz, C.; Filho, J.B.D.; Carabelli, V.; Carbone, E.; Pasquarelli, A. Progress in transparent diamond microelectrode arrays. Phys. Status Solidi A 2015, 212, 2445–2453. [Google Scholar] [CrossRef]
- Kshirsagar, P.; Burkhardt, C.; Mierzejewski, M.; Chassé, T.; Fleischer, M.; Jones, P.D. Graphene-based transparent microelectrode arrays for optical access to the recording site. In Proceedings of the Front. Cell. Neurosci. Conference Abstract: MEA Meeting 2018 | 11th International Meeting on Substrate Integrated Microelectrode Arrays, Reutlingen, Germany, 4–6 July 2018. [Google Scholar]
- Blau, A.; Murr, A.; Wolff, S.; Sernagor, E.; Medini, P.; Iurilli, G.; Ziegler, C.; Benfenati, F. Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 2011, 32, 1778–1786. [Google Scholar] [CrossRef]
- Guillén, C.; Herrero, J. Polycrystalline growth and recrystallization processes in sputtered ITO thin films. Thin Solid Films 2006, 510, 260–264. [Google Scholar] [CrossRef]
- Choi, S.K.; Lee, J.I. Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2001, 19, 2043–2047. [Google Scholar] [CrossRef]
- Ryynänen, T.; Toivanen, M.; Salminen, T.; Ylä-Outinen, L.; Narkilahti, S.; Lekkala, J. Ion Beam Assisted E-Beam Deposited TiN Microelectrodes—Applied to Neuronal Cell Culture Medium Evaluation. Front. Neurosci. 2018, 12, 1–13. [Google Scholar] [CrossRef]
- Nisch, W.; Böck, J.; Egert, U.; Hämmerle, H.; Mohr, A. A thin film microelectrode array for monitoring extracellular neuronal activity in vitro. Biosens. Bioelectron. 1994, 9, 737–741. [Google Scholar] [CrossRef]
- Kim, R.; Nam, Y. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. J. Neural Eng. 2015, 12, 026010. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, T.; Hyysalo, A.; Kapucu, F.E.; Aarnos, L.; Vinogradov, A.; Eglen, S.J.; Ylä-Outinen, L.; Narkilahti, S. Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: Comparison to rat cortical cultures. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossnagel, S.M.; Mikalsen, D.; Kinoshita, H.; Cuomo, J.J. Collimated magnetron sputter deposition. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 1991, 9, 261–265. [Google Scholar] [CrossRef]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Blau, A. Cell adhesion promotion strategies for signal transduction enhancement in microelectrode array in vitro electrophysiology: An introductory overview and critical discussion. Curr. Opin. Colloid Interface Sci. 2013, 18, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.-J.; Gao, J.; Silva, R.A.; Song, S. Effect of the oxygen flow on the properties of ITO thin films deposited by ion beam assisted deposition (IBAD). Thin Solid Films 2008, 516, 5454–5459. [Google Scholar] [CrossRef] [Green Version]
MEA Batch | 1 | 2 | 3 | 4 |
---|---|---|---|---|
ITO thickness (nm) | 20 | 20 | 150 | 180 |
ITO deposition method | IBAD | IBAD | IBAD | Sputtering |
MEA Version | 1 | 2 | 3 |
---|---|---|---|
Track material | ITO | ITO | ITO |
Electrode material | ITO | TiN on ITO | TiN on ITO |
TiN thickness (nm) | - | 40 | 200 |
Batch/ Version | ITO Deposition Method | ITO Thickness (nm) | TiN Thickness (nm) | Measured Impedance of Ø30 µm Electrodes (kΩ) | Measured Impedance of 35 × 50 µm2 Electrodes (kΩ) | Normalized Impedance (kΩ) | RMS Noise (µV) | ITO Sheet Resistance (Ω/□) |
---|---|---|---|---|---|---|---|---|
1/1 | IBAD | 20 | - | 1200 ± 260 | 820 ± 140 | 2030 | 12 ± 1 | 2.6 × 103 |
2/1 | IBAD | 20 | - | 1950 ± 810 | 1170 ± 120 | 2900 | Na | 9.4 × 106 |
3/1 | IBAD | 150 | - | 1940 ± 290 | 1180 ± 150 | 2920 | Na | 76.4 × 103 |
4/1 | Sputtering | 180 | - | 1420 ± 170 | 830 ± 30 | 2050 | Na | 8–10 * |
2/1 | IBAD | 20 | 40 | 320 ± 20 | 190 ± 10 | 470 | 6.1 ± 0.5 | 2.6 × 103 |
2/2 | IBAD | 20 | 40 | 370 ± 10 | 150 ± 10 | 370 | na | 9.4 × 106 |
3/2 | IBAD | 150 | 40 | 350 ± 10 | 160 ± 3 | 400 | na | 76.4 × 103 |
4/2 | Sputtering | 180 | 40 | 300 ± 10 | 130 ± 2 | 320 | na | 8–10 * |
1/3 | IBAD | 20 | 200 | 190 ± 10 | 150 ± 20 | 370 | 5.6 ± 0.5 | 2.6 × 103 |
2/3 | IBAD | 20 | 200 | 240 ± 10 | 120 ± 2 | 300 | na | 9.4 × 106 |
3/3 | IBAD | 150 | 200 | 210 ± 4 | 110 ± 2 | 270 | na | 76.4 × 103 |
4/3 | Sputtering | 180 | 200 | 190 ± 3 | 90 ± 1 | 220 | na | 8–10 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryynänen, T.; Mzezewa, R.; Meriläinen, E.; Hyvärinen, T.; Lekkala, J.; Narkilahti, S.; Kallio, P. Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell In Vitro Recordings. Micromachines 2020, 11, 497. https://doi.org/10.3390/mi11050497
Ryynänen T, Mzezewa R, Meriläinen E, Hyvärinen T, Lekkala J, Narkilahti S, Kallio P. Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell In Vitro Recordings. Micromachines. 2020; 11(5):497. https://doi.org/10.3390/mi11050497
Chicago/Turabian StyleRyynänen, Tomi, Ropafadzo Mzezewa, Ella Meriläinen, Tanja Hyvärinen, Jukka Lekkala, Susanna Narkilahti, and Pasi Kallio. 2020. "Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell In Vitro Recordings" Micromachines 11, no. 5: 497. https://doi.org/10.3390/mi11050497
APA StyleRyynänen, T., Mzezewa, R., Meriläinen, E., Hyvärinen, T., Lekkala, J., Narkilahti, S., & Kallio, P. (2020). Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell In Vitro Recordings. Micromachines, 11(5), 497. https://doi.org/10.3390/mi11050497