Thin-Film MEMS Resistors with Enhanced Lifetime for Thermal Inkjet
Abstract
:1. Introduction
2. Thermal Gradients in Resistors
3. Resistors Simulation
4. Experiment and Results
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoath, S.D. (Ed.) Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016. [Google Scholar]
- Zapka, W. (Ed.) Handbook of Industrial Inkjet Printing: A Full System Approach; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018. [Google Scholar]
- Hutchings, I.M.; Martin, G.D. (Eds.) Inkjet Technology for Digital Fabrication; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar]
- Le, H.P. Progress and trends in ink-jet printing technology. J. Imaging Sci. Technol. 1998, 42, 49–62. [Google Scholar]
- Hoefemann, H.; Wadle, S.; Bakhtina, N.; Kondrashov, V.; Wangler, N.; Zengerle, R. Sorting and lysis of single cells by BubbleJet technology. Sens. Actuators B Chem. 2012, 168, 442–445. [Google Scholar] [CrossRef]
- De Wijs, K.; Liu, C.; Dusa, A.; Vercruysse, D.; Majeed, B.; Tezcan, D.S.; Blaszkiewicz, K.; Loo, J.; Lagae, L. Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting. Lab Chip 2017, 17, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Majeed, B.; Liu, C.; Van Acker, L.; Daily, R.; Miyazaki, T.; Sabuncuoglu, D.; Lagae, L.; Miyazaki, T. Fabrication of silicon-based microfluidics device for cell sorting application. In Proceedings of the 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 27–30 May 2014; pp. 165–169. [Google Scholar]
- Scoutaris, N.; Ross, S.; Douroumis, D. Current Trends on Medical and Pharmaceutical Applications of Inkjet Printing Technology. Pharm. Res. 2016, 33, 1799–1816. [Google Scholar] [CrossRef] [PubMed]
- Tan, H. Numerical study of a bubble driven micromixer based on thermal inkjet technology. Phys. Fluids 2019, 31, 062006. [Google Scholar] [CrossRef]
- Liou, J.-C.; Wu, C.-C. Design and fabrication of microfluidic inkjet chip with high voltage ESD protection system for DNA droplets arrangement and detection. Microsyst. Technol. 2015, 23, 199–213. [Google Scholar] [CrossRef]
- Mattana, G.; Loi, A.; Woytasik, M.; Barbaro, M.; Noël, V.; Piro, B. Inkjet-Printing: A New Fabrication Technology for Organic Transistors. Adv. Mater. Technol. 2017, 2, 1700063. [Google Scholar] [CrossRef]
- Khan, A.; Rahman, K.; Hyun, M.-T.; Kim, N.-S.; Choi, K.-H. Multi-nozzle electrohydrodynamic inkjet printing of silver colloidal solution for the fabrication of electrically functional microstructures. Appl. Phys. A 2011, 104, 1113–1120. [Google Scholar] [CrossRef]
- Huang, C.; Tsou, C. The implementation of a thermal bubble actuated microfluidic chip with microvalve, micropump and micromixer. Sens. Actuators A Phys. 2014, 210, 147–156. [Google Scholar] [CrossRef]
- Sourtiji, E.; Peles, Y. A micro-synthetic jet in a microchannel using bubble growth and collapse. Appl. Therm. Eng. 2019, 160, 114084. [Google Scholar] [CrossRef]
- Law, J.; Kong, K.W.; Chan, C.; Sun, W.; Li, W.J.; Chau, E.B.F.; Chan, G.K.M. Atomization of High-Viscosity Fluids for Aromatherapy Using Micro-heaters for Heterogeneous Bubble Nucleation. Sci. Rep. 2017, 7, 40289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonfert, D.; Gieser, H.; Bock, K.; Svasta, P.; Ionescu, C. Electrical stress on thin film TaN resistive structures. In Proceedings of the IEEE 17th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, Romania, 20–23 October 2011; pp. 313–318. [Google Scholar]
- Khalate, A.; Bombois, X.; Scorletti, G.; Babuska, R.; Koekebakker, S.; De Zeeuw, W. A Waveform Design Method for a Piezo Inkjet Printhead Based on Robust Feedforward Control. J. Microelectromech. Syst. 2012, 21, 1365–1374. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet Printing-Process and Its Applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Khalate, A.; Bomboisa, X.; Babuškaa, R.; Wijshoffb, H.; Waarsingb, R. Performance improvement of a drop-on-demand inkjet printhead using an optimization-based feed forward control method. Control Eng. Pract. 2011, 19, 771–781. [Google Scholar] [CrossRef]
- Baca, A.G.; Overberg, M.E.; Wolfley, S.L.; Fortune, T.R. A thin film TaN resistor reliability evaluation. In Proceedings of the 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2–6 April 2017. [Google Scholar] [CrossRef]
- Lee, T.; Watson, K.; Chen, F.; Gill, J.; Harmon, D.; Sullivan, T.; Li, B. Characterization and reliability of TaN thin film resistors. In Proceedings of the 2004 IEEE International Reliability Physics Symposium, Phoenix, AZ, USA, 25–29 April 2004; pp. 502–508. [Google Scholar] [CrossRef]
- Dąbrowski, A.; Dziedzic, A. Stability of low ohmic thick-film resistors under pulsed operation. Microelectron. Reliab. 2018, 84, 95–104. [Google Scholar] [CrossRef]
- Liou, J.; Yang, C.; Gong, C. Design and Fabrication of Identification Inkjet Print Head Chip Fuse Sensors. Sens. Mater. 2016, 28, 493–501. [Google Scholar]
- Park, J.-H.; Oh, Y. Investigation to minimize heater burnout in thermal thin film print heads. Microsyst. Technol. 2005, 11, 16–22. [Google Scholar] [CrossRef]
- Lim, J.-H.; Kuk, K.-; Shin, S.-L.; Baek, S.-S.; Kim, Y.-L.; Oh, Y.-S. Investigation of reliability problems in thermal inkjet printhead. In Proceedings of the 2004 IEEE International Reliability Physics Symposium, Phoenix, AZ, USA, 25–29 April 2004; pp. 251–254. [Google Scholar]
- McGlone, J.M.; Pommerenck, J.; Graham, M.W.; Wager, J.F. Amorphous Metal Thin Films for Thermal Inkjet Printing. J. Microelectromech. Syst. 2018, 27, 289–295. [Google Scholar] [CrossRef]
- Liu, B.; Hou, Y.P.; Desheng, L.I.; Yang, J.H. A thermal bubble micro-actuator with induction heating. Sens. Actuators A Phys. 2015, 222, 8–14. [Google Scholar] [CrossRef]
- Einat, M.; Grajower, M. Microboiling Measurements of Thermal-Inkjet Heaters. J. Microelectromech. Syst. 2010, 19, 391–395. [Google Scholar] [CrossRef]
- Einat, M.; Einat, N. Two-dimension full array high-speed ink-jet print head. Appl. Phys. Lett. 2006, 89, 73505. [Google Scholar] [CrossRef] [Green Version]
- Einat, M.; Bar-Levav, E. 2D segmented large inkjet printhead for high speed 3D printers. J. Micromech. Microeng. 2015, 25, 5. [Google Scholar] [CrossRef]
Shape | E(C) (v/m) | E(H) (v/m) | E(R) (v/m) | En(H) | En(R) |
---|---|---|---|---|---|
A1 | 371.3 | 397 | 274.2 | 107% | 74% |
A2 | 377.3 | 443.3 | 273.2 | 117% | 72% |
A3 | 397.9 | 587.3 | 256.6 | 148% | 64% |
A4 | 368.4 | 404.7 | 278 | 110% | 75% |
Trapezoid | 415.2 | 588.7 | 247.1 | 142% | 60% |
Resistor Shape | En(R) | En(H) | Average Number of Pulses until Breakdown |
---|---|---|---|
Trapezoid | 60% | 142% | 2.02 × 10 8 |
A3 | 64% | 148% | 2.75 × 10 8 |
A2 | 72% | 117% | 1.88 × 10 9 |
A4 | 75% | 110% | 2.35 × 10 9 |
A1 | 74% | 107% | 2.49 × 10 9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar-Levav, E.; Witman, M.; Einat, M. Thin-Film MEMS Resistors with Enhanced Lifetime for Thermal Inkjet. Micromachines 2020, 11, 499. https://doi.org/10.3390/mi11050499
Bar-Levav E, Witman M, Einat M. Thin-Film MEMS Resistors with Enhanced Lifetime for Thermal Inkjet. Micromachines. 2020; 11(5):499. https://doi.org/10.3390/mi11050499
Chicago/Turabian StyleBar-Levav, Elkana, Moshe Witman, and Moshe Einat. 2020. "Thin-Film MEMS Resistors with Enhanced Lifetime for Thermal Inkjet" Micromachines 11, no. 5: 499. https://doi.org/10.3390/mi11050499
APA StyleBar-Levav, E., Witman, M., & Einat, M. (2020). Thin-Film MEMS Resistors with Enhanced Lifetime for Thermal Inkjet. Micromachines, 11(5), 499. https://doi.org/10.3390/mi11050499