Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hefner, A.R.; Singh, R.; Lai, J.S.; Berning, D.W.; Bouche, S.; Chapuy, C. SiC power diodes provide breakthrough performance for a wide range of applications. IEEE Trans. Power Electron. 2001, 16, 273–280. [Google Scholar] [CrossRef]
- Licciardo, G.D.; Bellone, S.; Benedetto, L.D. Analytical model of the forward operation of 4H-SiC vertical DMOSFET in the safe operating temperature range. IEEE Trans. Power Electron. 2015, 30, 5800–5809. [Google Scholar] [CrossRef]
- Wang, X.; Cooper, J.A. High-Voltage n-Channel IGBTs on Free-Standing 4H-SiC Epilayers. IEEE Trans. Electron Devices 2010, 57, 511–515. [Google Scholar] [CrossRef]
- Ren, N.; Wang, J.; Sheng, K. Design and Experimental Study of 4H-SiC trenched junction barrier Schottky diodes. ISO IEEE Trans. Electron Devices 2014, 61, 2459–2465. [Google Scholar]
- Min, S.J.; Shin, M.C.; Nguyen, N.T.; Oh, J.M.; Koo, S.M. High-performance temperature sensors based on dual 4H-SiC JBS and SBD devices. Materials 2020, 13, 445. [Google Scholar] [CrossRef] [Green Version]
- Raja, P.V.; Murty, N.V.L.N. Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics. J. Semicond. 2019, 40, 022804. [Google Scholar] [CrossRef]
- Zhang, X.; Ha, S.; Benamara, M.; Skowronski, M.; O’Loughlin, M.J.; Sumakeris, J.J. Cross-sectional structure of carrot defects in 4H-SiC epilayers. Appl. Phys. Lett. 2004, 85, 5209–5211. [Google Scholar] [CrossRef]
- Konishi, K.; Yamamoto, S.; Nakata, S.; Yu, N.; Nakanishi, Y.; Tanaka, T.; Mitani, Y.; Tomita, N.; Toyoda, Y.; Yamakawa, S. Stacking fault expansion from basal plane dislocations converted into threading edge dislocations in 4H-SiC epilayers under high current stress. J. Appl. Phys. 2013, 114, 014504. [Google Scholar] [CrossRef]
- Maximenko, S.I.; Freitas, J.A., Jr.; Myers-Ward, R.L.; Lew, K.K.; Vanmil, B.L.; Jr, C.R.E.; Gaskill, D.K.; Muzykov, P.G.; Sudarshan, T.S. Effect of threading screw and edge dislocations on transport properties of 4H-SiC homoepitaxial layers. J. Appl. Phys. 2010, 108, 013708. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, S.; Yamashita, T.; Miyajima, M.; Senzaki, J.; Kato, T.; Yonezawa, Y.; Kojima, K.; Okumura, H.; Miyazato, M. Structural analysis of interfacial dislocations and expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes. Jpn. J. Appl. Phys. 2019, 58, 011005. [Google Scholar] [CrossRef]
- Yang, Z.M.; Lan, F.; Li, Y.; Gong, M.; Huang, M.M.; Gao, B.; Hu, J.K.; Ma, Y. The effect of the interfacial states by swift heavy ion induced atomic migration in 4H-SiC Schottky barrier diodes. Nucl. Instrum. Methods Phys. Res. 2018, 436, 244–248. [Google Scholar] [CrossRef]
- Lee, K.Y.; Huang, Y.H. An Investigation on barrier in homogeneities of 4H-SiC Schottky barrier diodes induced by surface morphology and traps. IEEE Trans. Electron Devices 2012, 5, 694–699. [Google Scholar] [CrossRef]
- Liu, L.Y.; Shen, T.L.; Liu, A.; Zhang, T.; Bai, S.; Xu, S.R.; Jin, P.; Hao, Y.; Ouyang, X.P. Performance degradation and defect characterization of Ni/4H-SiC Schottky diode neutron detector in high fluence rate neutron irradiation. Diam. Relat. Mater. 2018, 88, 256–261. [Google Scholar] [CrossRef]
- Huang, L.; Gu, X. Fermi level unpinning of metal/p-type 4H-SiC interface by combination of sacrificial oxidation and hydrogen plasma treatment. J. Appl. Phys. 2019, 125, 025301. [Google Scholar] [CrossRef]
- Mandal, K.C.; Chaudhuri, S.K.; Nguyen, K.V.; Mannan, M.A. Correlation of deep levels with detector performance in 4H-SiC epitaxial Schottky barrier alpha detectors. IEEE Trans. Nucl. Sci. 2014, 61, 2338–2344. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Harada, S.; Seki, K.; Horio, A.; Mitsuhashi, T.; Koike, D.; Tagawa, M.; Ujihara, T. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method. Appl. Phys. Express 2014, 7, 065501. [Google Scholar] [CrossRef]
- Yamashita, T.; Matsuhata, H.; Naijo, T.; Momose, K.; Osawa, H. Structural analysis of the 3C/4H boundaries formed on prismatic planes in 4H-SiC epitaxial films. J. Cryst. Growth 2016, 455, 172–180. [Google Scholar] [CrossRef]
- Camarda, M.; Magna, A.L.; Via, F.L. Monte Carlo study of the early growth stages of 3C-SiC on misoriented <11-20> and <1-100> 6H-SiC substrates. Mater. Sci. Forum 2014, 778, 238–242. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Yu, L.; Wang, Y.; Zhou, P.; Niu, Y.X.; Li, Z.H.; Chen, Y.F.; Han, P. Reduction of morphological defects in 4H-SiC epitaxial layers. J. Cryst. Growth 2019, 506, 108–113. [Google Scholar] [CrossRef]
- Pintilie, I.; Pintilie, L.; Irmscher, K.; Thomas, B. Formation of the Z1/2 deep-level defects in 4H-SiC epitaxial layers: Evidence for nitrogen participation. Appl. Phys. Lett. 2002, 81, 4841–4843. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Y.; Raghothamachar, B.; Kim, T.; Dudley, M.; Kim, J. Understanding the microstructures of triangular defects in 4H-SiC homoepitaxial. J. Cryst. Growth 2017, 480, 119–125. [Google Scholar] [CrossRef]
- Lebedev, A.A. Deep level centers in silicon carbide: A review. Semiconductors 1999, 33, 107–130. [Google Scholar] [CrossRef]
- Hu, J.; Xin, X.; Zhao, J.H.; Yan, F.; Kjornrattanawanich, B. Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area. Opt. Lett. 2006, 31, 1591–1593. [Google Scholar] [CrossRef]
- Lioliou, G.; Mazzillo, M.C.; Sciuto, A.; Barnett, A.M. Electrical and ultraviolet characterization of 4H-SiC Schottky photodiodes. Opt. Express 2015, 23, 21657. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.G.; Liu, X.F.; Shen, Z.W.; Wen, Z.X.; Chen, J.; Zhao, W.S.; Wang, L.; Zhang, F.; Zhang, X.H.; Li, X.G.; et al. Improvement of fast homoepitaxial growth and defect reduction techniques of thick 4H-SiC epilayers. J. Cryst. Growth 2019, 505, 1–4. [Google Scholar] [CrossRef]
- Lilja, L.; Hassan, J.U.; Booker, I.D.; Bergman, J.P.; Janzén, E. Influence of growth temperature on carrier lifetime in 4H-SiC epilayers. J. Cryst. Growth 2013, 740–742, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Storasta, L.; Tsuchida, H.; Miyazawa, T.; Ohshima, T. Enhanced annealing of the Z1/2 defect in 4H-SiC epilayers. J. Appl. Phys. 2008, 103, 013705. [Google Scholar] [CrossRef]
- Daigo, Y.; Ishii, S.; Kobayashi, T. Impacts of surface C/Si ratio on in-wafer uniformity and defect density of 4H-SiC homo-epitaxial films grown by high-speed wafer rotation vertical CVD. Jpn. J. Appl. Phys. 2019, 58, SBBK06. [Google Scholar] [CrossRef]
- Watanabe, Y.; Katsuno, T.; Ishikawa, T. Relationship between characteristics of SiC-SBD and surface defect. Hyomen Kagaku 2014, 35, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, H.; Danno, K.; Kimoto, T.; Tojo, T.; Matsunami, H. Effects of C/Si ratio in fast epitaxial growth of 4H-SIC(0001) by vertical hot-wall chemical vapor deposition. J. Appl. Phys. 2005, 281, 370–376. [Google Scholar] [CrossRef]
- Miyazawa, T.; Tsuchida, A.H. Growth of 4H-SiC epilayers and Z1/2 center elimination. Mater. Sci. Forum 2012, 717–720, 81–86. [Google Scholar] [CrossRef]
- Yazdanfar, M.; Stenberg, P.; Booker, I.D.; Ivanov, I.G.; Kordina, O.; Pedersen, H.; Janzen, E. Process stability and morphology optimization of very thick 4H-SiC epitaxial layers grown by chloride-based CVD. J. Cryst. Growth 2013, 113, 125–130. [Google Scholar] [CrossRef]
- Shrivastava, A.; Muzykov, P.; Caldwell, J.D.; Sudarshan, T.S. Study of triangular defects and inverted pyramids in 4H-SiC 4° off-cut (0001) Si face epilayers. J. Cryst. Growth 2008, 310, 4443. [Google Scholar] [CrossRef]
- Feng, G.; Suda, J.; Kimoto, T. Characterization of major in-grown stacking faults in 4H-SiC epilayers. Phys. Lett. 2009, 94, 091910. [Google Scholar] [CrossRef]
- Niwa, H.; Feng, G.; Suda, J.; Kimoto, T. Breakdown characteristics of 15-kV-class 4H-SiC PiN diodes with various junction termination structures. IEEE Trans. Electron Devices 2012, 59, 2748–2752. [Google Scholar] [CrossRef]
- Xin, B.; Jia, R.X.; Hu, J.C.; Tsai, C.Y.; Lin, H.H.; Zhang, Y.M. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD. Appl. Surf. Sci. 2015, 357, 985–993. [Google Scholar] [CrossRef]
- Chen, W.; Lee, K.; Capano, M. Growth and characterization of nitrogen-doped C-face 4H-SiC epilayers. J. Cryst. Growth 2006, 297, 265–271. [Google Scholar] [CrossRef]
- Kojima, K.; Okumura, H.; Kuroda, S.; Arai, K. Homoepitaxial growth of 4H-SiC on -axis (0001(_)) C-face substrates by chemical vapor depositon. J. Cryst. Growth 2004, 269, 367–376. [Google Scholar] [CrossRef]
- Leone, S.; Beyer, F.C.; Pedersen, H.; Kordina, O.; Henry, A.; Janzen, E. Growth of smooth 4H-SiC epilayers on 4° off-axis substrates with chloride-based CVD at very high growth rate. Mater. Res. Bull. 2011, 46, 1272–1275. [Google Scholar] [CrossRef]
- Pristavu, G.; Brezeanu, G.; Badila, M.; Pascu, R.; Danila, M.; Godignon, P. A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures. Appl. Phys. Lett. 2015, 106, 261605. [Google Scholar] [CrossRef]
- Kyoung, S.; Jung, E.S.; Kang, T.Y.; Sung, M.Y. Optimized designing to improve electrical characteristics of 4H-SiC wide trench junction barrier Schottky diode. Sci. Adv. Mater. 2018, 10, 416–421. [Google Scholar] [CrossRef]
- Okino, H.; Kameshiro, N.; Konishi, K.; Shima, A.; Yamada, R. Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes. J. Appl. Phys. 2017, 122, 235704. [Google Scholar] [CrossRef]
- Benamara, M.; Anani, M.; Akkal, B.; Benamara, Z. Ni/SiC-6H Schottky barrier diode interfacial states characterization related to temperature. J. Alloys Compd. 2014, 603, 197–201. [Google Scholar] [CrossRef]
- Kzlovski, V.V.; Lebedev, A.A.; Levinshtein, M.E.; Rumyantsev, S.L.; Palmour, J.W. Impact of high energy electron irradiation on high voltage Ni/4H-SiC Schottky diodes. Appl. Phys. Lett. 2017, 110, 133501. [Google Scholar] [CrossRef]
- Shabunina, E.I.; Levinshtein, M.E.; Shmidt, N.M.; Ivanov, P.A.; Palmour, J.W. 1/f noise in forward biased high voltage 4H-SiC Schottky diodes. Solid State Electron. 2014, 96, 44–49. [Google Scholar] [CrossRef]
- Zhang, C.X.; Zhang, E.X.; Fleetwood, D.M.; Schrimpf, R.D.; Dhar, S.; Ryu, S.H.; Shen, X.; Pantelides, S.T. Origins of low-frequency noise and interface traps in 4H-SiC MOSFETs. IEEE Electron Device Lett. 2013, 34, 117–119. [Google Scholar] [CrossRef]
- Alexander, S.; David, Z.Y.; Ting, C.J.; Hill, M.L.; Jean, N.; Sam, A.; Keo, J.M.; Mumolo and Sarath, D.G. Gain and noise of high-performance long wavelength superlattice infrared detectors. Appl. Phys. Lett. 2010, 96, 1–3. [Google Scholar]
- Kalinina, E.V.; Violina, G.N.; Nikitina, I.P.; Yagovkina, M.A.; Zabrodski, V.V. Proton irradiation of 4H-SiC photodetectors with Schottky barriers. Semiconductors 2019, 53, 844–849. [Google Scholar] [CrossRef]
- Litton, C.W.; Johnstone, D.; Akarca-Biyikli, S.; Ramaiah, K.S.; Bhat, I.; Chow, T.P.; Kim, J.K.; Schubert, E.F. Effect of C/Si ratio on deep levels in epitaxial 4H-SiC. Appl. Phys. Lett. 2006, 88, 121914. [Google Scholar] [CrossRef] [Green Version]
- Eberlein, T.A.G.; Jones, R.; Briddon, P.R. Z1/Z2 defects in 4H-SiC. Phys. Rev. Lett. 2003, 90, 225502. [Google Scholar] [CrossRef]
- Trinh, X.T.; Szasz, K.; Homos, T.; Kawahara, K.; Suda, J.; Kimoto, T.; Gali, A.; Janzén, E.; Son, N.T. Negative-U carbon vacancy in 4H-SiC: Assessment of charge correction schemes and identification of the negative carbon vacancy at the quasicubic site. Phys. Rev. Lett. 2013, 88, 235209. [Google Scholar] [CrossRef] [Green Version]
- Lilja, L.; Booker, I.D.; Hassan, J.U.; Janzen, E.; Bergman, J.P. The influence of growth conditions on carrier lifetime in 4H-SiC epilayers. J. Cryst. Growth 2013, 381, 43–50. [Google Scholar] [CrossRef]
Samples # | #1 | #2 | #3 | #4 | #5 | #6 | #7 |
---|---|---|---|---|---|---|---|
C/Si | 0.9 | 1 | 1.1 | 0.8 | 0.8 | 0.8 | 0.8 |
Growth rate (μm/h) | 60 | 60 | 60 | 60 | 60 | 60 | 30 |
Doping density (1015 cm−3) | 1 | 1 | 1 | 4 | 7.5 | 10 | 7.5 |
Samples # | #1 | #2 | #3 |
---|---|---|---|
n | 1.008 | 1.004 | 1.010 |
ΦB (eV) | 1.629 | 1.631 | 1.629 |
Neff (1015 cm−3) | 1.25 | 1.17 | 1.15 |
Samples # | ΔE (eV) | σ (cm2) | Nt (cm−3) |
---|---|---|---|
#1 | Ec-0.627 | 1.18 × 10−15 | 2.28 × 1013 |
#2 | Ec-0.626 | 8.01 × 10−16 | 3.79 × 1013 |
#3 | Ec-0.624 | 5.06 × 10−16 | 2.22 × 1013 |
#4 | Ec-0.648 | 2.42 × 10−16 | 7.62 × 1012 |
#5 | Ec-0.644 | 2.44 × 10−15 | 6.78 × 1012 |
#6 | Ec-0.687 | 8.33 × 10−15 | 1.24 × 1013 |
#7 | Ec-0.610 | 5.96 × 10−16 | 1.41 × 1013 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Meng, C.; Yu, L.; Li, Y.; Yan, F.; Han, P.; Ji, X. Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions. Micromachines 2020, 11, 609. https://doi.org/10.3390/mi11060609
Li J, Meng C, Yu L, Li Y, Yan F, Han P, Ji X. Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions. Micromachines. 2020; 11(6):609. https://doi.org/10.3390/mi11060609
Chicago/Turabian StyleLi, Jinlan, Chenxu Meng, Le Yu, Yun Li, Feng Yan, Ping Han, and Xiaoli Ji. 2020. "Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions" Micromachines 11, no. 6: 609. https://doi.org/10.3390/mi11060609
APA StyleLi, J., Meng, C., Yu, L., Li, Y., Yan, F., Han, P., & Ji, X. (2020). Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions. Micromachines, 11(6), 609. https://doi.org/10.3390/mi11060609