Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cashdollar, K.L.; Zlochower, I.A.; Green, G.M.; Thomas, R.A.; Hertzberg, M. Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process. Ind. 2000, 13, 327–340. [Google Scholar] [CrossRef]
- Licht, S.; Cui, B.; Wang, B.; Li, F.-F.; Lau, J.; Liu, S. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy 2005, 78, 661–669. [Google Scholar] [CrossRef]
- Chen, P.; Wu, X.; Lin, J.; Tan, K.L. High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures. Science 1999, 285, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, Z.; Li, C.; Tang, T.; Liu, X.; Han, S.; Lei, B.; Zhou, C. Detection of NO2down to ppb Levels Using Individual and Multiple In2O3Nanowire Devices. Nano Lett. 2004, 4, 1919–1924. [Google Scholar] [CrossRef]
- Kim, C.K.; Lee, J.; Choi, S.; Noh, I.; Kim, H.; Cho, N.; Hong, C.; Jang, G. Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature. Sens. Actuators B Chem. 2001, 77, 455–462. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Tsai, Y.-Y.; Lin, K.-W.; Chen, H.-I.; Liu, W.-C. Hydrogen sensing properties of a Pt-oxide-Al0.24Ga0.76As high-electron-mobility transistor. Appl. Phys. Lett. 2005, 86, 112103. [Google Scholar] [CrossRef]
- Wadell, C.; Syrenova, S.; Langhammer, C. Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides. ACS Nano 2014, 8, 11925–11940. [Google Scholar] [CrossRef]
- Isobe, Y.; Yamauchi, M.; Ikeda, R.; Kitagawa, H. A study on hydrogen adsorption of polymer protected Pt nanoparticles. Synth. Met. 2003, 135, 757–758. [Google Scholar] [CrossRef]
- Shin, W.; Imai, K.; Izu, N.; Murayama, N. Thermoelectric Thick-Film Hydrogen Gas Sensor Operating at Room Temperature. Jpn. J. Appl. Phys. 2001, 40, L1232–L1234. [Google Scholar] [CrossRef]
- Stolbov, S.; Rahman, T.S. First Principles Study of Adsorption, Diffusion and Dissociation of NH_3 on Ni and Pd Surfaces. arXiv 2005, arXiv:cond-mat/0501060. [Google Scholar]
- Offermans, W.; Jansen, A.; Van Santen, R.; Novell-Leruth, G.; Ricart, J.; Perez-Ramirez, J. Ammonia Dissociation on Pt {100}, Pt {111}, and Pt {211}: A Comparative Density Functional Theory Study. J. Phys. Chem. C 2007, 111, 17551–17557. [Google Scholar] [CrossRef]
- Gohndrone, J.M. Ammonia adsorption and decomposition on several faces of platinum. J. Vac. Sci. Technol. A 1989, 7, 1986–1990. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Labat, F.; Ciofini, I.; Pauporté, T.; Adelung, R. Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuators B Chem. 2018, 254, 1259–1270. [Google Scholar] [CrossRef]
- Buttner, W.; Post, M.B.; Burgess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 2011, 36, 2462–2470. [Google Scholar] [CrossRef]
- Wu, J.; Fedder, G.K.; Carley, L.R. A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50-/Spl Mu/G//Spl Radic/Hz Monolithic CMOS MEMS Accelerometer. IEEE J. Solid-State Circuits 2004, 39, 722–730. [Google Scholar]
- Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L. Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 2012, 7, 602–608. [Google Scholar] [CrossRef]
- Abeysinghe, D.; Dasgupta, S.; Boyd, J.; Jackson, H. A novel MEMS pressure sensor fabricated on an optical fiber. IEEE Photon- Technol. Lett. 2001, 13, 993–995. [Google Scholar] [CrossRef]
- Gajula, D.; Jahangir, I.; Koley, G. High Temperature AlGaN/GaN Membrane Based Pressure Sensors. Micromachines 2018, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Jha, C.M.; Bahl, G.; Melamud, R.; Chandorkar, S.A.; Hopcroft, M.A.; Kim, B.; Agarwal, M.; Salvia, J.; Mehta, H.; Kenny, T.W. Cmos-Compatible Dual-Resonator MEMS Temperature Sensor with Milli-Degree Accuracy. In Proceedings of the TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 229–232. [Google Scholar]
- Azevedo, R.G.; Jones, D.G.; Jog, A.V.; Jamshidi, B.; Myers, D.R.; Chen, L.; Fu, X.-A.; Mehregany, M.; Wijesundara, M.B.J.; Pisano, A.P. A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications. IEEE Sens. J. 2007, 7, 568–576. [Google Scholar] [CrossRef]
- Augustyniak, I.; Dziuban, J.; Knapkiewicz, P.; Matusiak, M.; Olszacki, M.; Pons, P. MEMS high-doses radiation sensor. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 1503–1506. [Google Scholar]
- Voiculescu, I.; Nordin, A.N. Acoustic wave based MEMS devices for biosensing applications. Biosens. Bioelectron. 2012, 33, 1–9. [Google Scholar] [CrossRef]
- Nomani, W.; Kersey, D.; James, J.; Diwan, D.; Vogt, T.; Webb, R.A.; Koley, G. Highly sensitive and multidimensional detection of NO2 using In2O3 thin films. Sens. Actuators B Chem. 2011, 160, 251–259. [Google Scholar] [CrossRef]
- Singh, A.; Uddin, A.; Sudarshan, T.; Koley, G. Tunable Reverse-Biased Graphene/Silicon Heterojunction Schottky Diode Sensor. Small 2013, 10, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Uddin, M.A.; Tolson, J.T.; Maire-Afeli, H.; Sbrockey, N.; Tompa, G.S.; Spencer, M.G.; Vogt, T.; Sudarshan, T.S.; Koley, G. Electrically tunable molecular doping of graphene. Appl. Phys. Lett. 2013, 102, 043101. [Google Scholar] [CrossRef]
- Uddin, A.; Singh, A.; Sudarshan, T.S.; Koley, G. Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity. Nanotechnology 2014, 25, 125501. [Google Scholar] [CrossRef] [PubMed]
- Craighead, H.G. Nanoelectromechanical Systems. Science 2000, 290, 1532–1535. [Google Scholar] [CrossRef] [Green Version]
- Tamayo, J. Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control. J. Appl. Phys. 2005, 97, 44903. [Google Scholar] [CrossRef]
- Pinnaduwage, L.A.; Boiadjiev, V.; Hawk, J.E.; Thundat, T. Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. Appl. Phys. Lett. 2003, 83, 1471–1473. [Google Scholar] [CrossRef]
- Huang, X.M.H.; Manolidis, M.; Jun, S.C.; Hone, J. Nanomechanical hydrogen sensing. Appl. Phys. Lett. 2005, 86, 143104. [Google Scholar] [CrossRef]
- Koley, G.; Qazi, M.; Lakshmanan, L.; Thundat, T. Gas sensing using electrostatic force potentiometry. Appl. Phys. Lett. 2007, 90, 173105. [Google Scholar] [CrossRef]
- Fan, R.; Zolper, J.C. Wide Energy Bandgap Electronic Devices; World Scientific: Singapore, 2003. [Google Scholar]
- Ambacher, O.; Smart, J.; Shealy, J.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Wong, K.-Y.; Chen, W.; Chen, K.J. Wide-Dynamic-Range Zero-Bias Microwave Detector Using AlGaN/GaN Heterojunction Field-Effect Diode. IEEE Microw. Wirel. Components Lett. 2010, 20, 277–279. [Google Scholar] [CrossRef]
- Villanueva, L.G.; Plaza, J.A.; Montserrat, J.M.; Perez, F.; Bausells, J. Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces. Microelectron. Eng. 2008, 85, 1120–1123. [Google Scholar] [CrossRef]
- Thaysen, J.; Boisen, A.; Hansen, O.; Bouwstra, S. Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement. Sens. Actuators A Phys. 2000, 83, 47–53. [Google Scholar] [CrossRef]
- Qazi, M.; DeRoller, N.; Talukdar, A.; Koley, G. III-V Nitride based piezoresistive microcantilever for sensing applications. Appl. Phys. Lett. 2011, 99, 193508. [Google Scholar] [CrossRef]
- Talukdar, A.; Koley, G. Impact of Biasing Conditions on Displacement Transduction by III-Nitride Microcantilevers. IEEE Electron Device Lett. 2014, 35, 1299–1301. [Google Scholar] [CrossRef]
- Bayram, F.; Khan, D.; Li, H.; Hossain, M.; Koley, G. Piezotransistive GaN microcantilevers based surface work function measurements. Jpn. J. Appl. Phys. 2018, 57, 040301. [Google Scholar] [CrossRef]
- Bayram, F.; Gajula, D.; Khan, D.; Gorman, S.; Koley, G. Nonlinearity in piezotransistive GaN microcantilevers. J. Micromech. Microeng. 2019, 29, 125011. [Google Scholar] [CrossRef]
- Talukdar, A.; Khan, M.F.; Lee, N.; Kim, S.; Thundat, T.; Koley, G. Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy. Nat. Commun. 2015, 6, 7885. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, K.R.; Polman, A. Plasmonic solar cells. Opt. Express 2008, 16, 21793. [Google Scholar] [CrossRef] [Green Version]
- Reineck, P.; Lee, G.P.; Brick, D.; Karg, M.; Mulvaney, P.; Bach, U. A Solid?State Plasmonic Solar Cell via Metal Nanoparticle Self?Assembly. Adv. Mater. 2012, 24, 4750–4755. [Google Scholar] [CrossRef] [PubMed]
- Genevet, P.; Lin, J.; Kats, M.A.; Capasso, F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun. 2012, 3, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, D.; Bayram, F.; Gajula, D.; Talukdar, A.; Li, H.; Koley, G. Plasmonic amplification of photoacoustic waves detected using piezotransistive GaN microcantilevers. Appl. Phys. Lett. 2017, 111, 062102. [Google Scholar] [CrossRef]
- Rashid, T.-R.; Phan, D.-T.; Chung, G.-S. A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Sens. Actuators B Chem. 2013, 185, 777–784. [Google Scholar] [CrossRef]
- Tobiska, P.; Hugon, O.; Trouillet, A.; Gagnaire, H. An integrated optic hydrogen sensor based on SPR on palladium. Sensors Actuators B: Chem. 2001, 74, 168–172. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kumari, D.; Gupta, B.D. Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sens. Actuators B Chem. 2012, 171, 976–983. [Google Scholar] [CrossRef]
- Khan, D.; Gajula, D.; Bayram, F.; Koley, G. Plasmonic Absorption Enabled Analyte Detection Using Piezotransistive Microcantilevers. In Proceedings of the 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), Portland, OR, USA, 14–17 October 2018; pp. 1–4. [Google Scholar]
- Kim, H.; Thompson, R.; Tilak, V.; Prunty, T.; Shealy, J.; Eastman, L.F. Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation. IEEE Electron Device Lett. 2003, 24, 421–423. [Google Scholar] [CrossRef]
- Kordos, P.; Kudela, P.; Gregušová, D.; Donoval, D. The effect of passivation on the performance of AlGaN/GaN heterostructure field-effect transistors. Semicond. Sci. Technol. 2006, 21, 1592–1596. [Google Scholar] [CrossRef]
- Green, B.; Chu, K.; Chumbes, E.; Smart, J.; Shealy, J.; Eastman, L.F. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2000, 21, 268–270. [Google Scholar] [CrossRef]
- Ghosh, S.; Nitnavare, R.; Dewle, A.; Tomar, G.B.; Chippalkatti, R.; More, P.; Kitture, R.; Kale, S.; Bellare, J.; Chopade, B.A. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: Anticancer and antioxidant activities. Int. J. Nanomed. 2015, 10, 7477–7490. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.-Y.; Ruan, F.; Yang, Z.; Zheng, N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2010, 6, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, M.; Kobayashi, H.; Kitagawa, H. Hydrogen Storage Mediated by Pd and Pt Nanoparticles. ChemPhysChem 2009, 10, 2566–2576. [Google Scholar] [CrossRef] [PubMed]
- Kemppainen, E.; Bodin, A.; Sebok, B.; Pedersen, T.; Seger, B.; Mei, B.; Bae, D.; Vesborg, P.C.K.; Halme, J.; Hansen, O.; et al. Scalability and feasibility of photoelectrochemical H2evolution: The ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ. Sci. 2015, 8, 2991–2999. [Google Scholar] [CrossRef] [Green Version]
- Arboleda, N.B.; Kasai, H.; Diño, W.A.; Nakanishi, H. Potential Energy of H2Dissociation and Adsorption on Pt(111) Surface: First-Principles Calculation. Jpn. J. Appl. Phys. 2007, 46, 4233–4237. [Google Scholar] [CrossRef]
- Kim, N.-H.; Choi, S.-J.; Yang, D.-J.; Bae, J.; Park, J.; Kim, I.-D. Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens. Actuators B Chem. 2014, 193, 574–581. [Google Scholar] [CrossRef]
- Lechuga, L.M.; Calle, A.; Golmayo, D.; Briones, F. Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky barrier sensors. Sens. Actuators B Chem. 1992, 7, 614–618. [Google Scholar] [CrossRef]
- Watkins, W.L.; Borensztein, Y. Ultrasensitive and fast single wavelength plasmonic hydrogen sensing with anisotropic nanostructured Pd films. Sens. Actuators B Chem. 2018, 273, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Ndaya, C.C.; Javahiraly, N.; Brioude, A. Recent Advances in Palladium Nanoparticles-Based Hydrogen Sensors for Leak Detection. Sensors 2019, 19, 4478. [Google Scholar] [CrossRef] [Green Version]
- Gland, J.L.; Kollin, E.B. Ammonia adsorption on the Pt(111) AND Pt(S)-6(111) × (111) surfaces. Surf. Sci. 1981, 104, 478–490. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B Chem. 2014, 199, 190–200. [Google Scholar] [CrossRef]
- Aarya, S.; Kumar, Y.; Chahota, R.K. Recent Advances in Materials, Parameters, Performance and Technology in Ammonia Sensors: A Review. J. Inorg. Organomet. Polym. Mater. 2019, 30, 269–290. [Google Scholar] [CrossRef]
- Bhatia, P.; Gupta, B.D. Surface Plasmon Resonance Based Fiber Optic Ammonia Sensor Utilizing Bromocresol Purple. Plasmonics 2012, 8, 779–784. [Google Scholar] [CrossRef]
- Modak, J. Haber process for ammonia synthesis. Resonance 2002, 7, 69–77. [Google Scholar] [CrossRef]
- Choudhary, T.; Sivadinarayana, C.; Goodman, D. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 2001, 72, 197–201. [Google Scholar] [CrossRef]
NP | H2 Concentration | Response Time | Signal-to-Noise Ratio (SNR) | Limit of Detection (LOD) |
---|---|---|---|---|
Pt | 1000 ppm | 13 s | 51 | ~15 ppm |
500 ppm | 7 s | 33.9 | ||
100 ppm | 12 s | 19.9 | ||
Pd | 1000 ppm | 9 s | 116.4 | ~12 ppm |
500 ppm | 13 s | 104.1 | ||
100 ppm | 20 s | 36.7 | ||
50 ppm | 26 s | 11.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.; Li, H.; Bayram, F.; Gajula, D.; Koley, G. Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers. Micromachines 2020, 11, 680. https://doi.org/10.3390/mi11070680
Khan D, Li H, Bayram F, Gajula D, Koley G. Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers. Micromachines. 2020; 11(7):680. https://doi.org/10.3390/mi11070680
Chicago/Turabian StyleKhan, Digangana, Hongmei Li, Ferhat Bayram, Durga Gajula, and Goutam Koley. 2020. "Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers" Micromachines 11, no. 7: 680. https://doi.org/10.3390/mi11070680
APA StyleKhan, D., Li, H., Bayram, F., Gajula, D., & Koley, G. (2020). Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers. Micromachines, 11(7), 680. https://doi.org/10.3390/mi11070680