Reliability of Miniaturized Transistors from the Perspective of Single-Defects
Abstract
:1. Introduction
2. Measurement Techniques for Characterization of Devices
3. Patterns of Bias Temperature Instabilities
3.1. Temperature Dependence of Charge Emission Times
3.2. Bias Dependence of Charge Trapping
4. Time-Dependent Defect Spectroscopy of Metal-Oxide-Semiconductor (MOS) Transistors
4.1. Extraction of Charge Emission Time
4.2. Extraction of Charge Capture Time
5. Modeling of Charge Trapping
6. Results
6.1. Charge Trapping Kinetics of Single Defects
6.2. Distribution of Step Heights of Single Defects
7. Conclusions
Funding
Conflicts of Interest
References
- Hisamoto, D.; Lee, W.-C.; Kedzierski, J.; Anderson, E.; Takeuchi, H.; Asano, K.; King, T.-J.; Bokor, J.; Hu, C. A folded-channel MOSFET for deep-sub-tenth micron era. In Proceedings of the International Electron Devices Meeting 1998. Technical Digest, San Francisco, CA, USA, 6–9 December 1998; pp. 1032–1034. [Google Scholar] [CrossRef]
- Huang, X.; Lee, W.-C.; Kuo, C.; Hisamoto, D.; Chang, L.; Kedzierski, J.; Anderson, E.; Takeuchi, H.; Choi, Y.-K.; Asano, K.; et al. Sub 50-nm FinFET: PMOS. In Proceedings of the International Electron Devices Meeting 1999. Technical Digest, Washington, DC, USA, 5–8 December 1999; pp. 67–70. [Google Scholar]
- Yu, B.; Chang, L.; Ahmed, S.; Wang, H.; Bell, S.; Yang, C.-Y.; Tabery, C.; Ho, C.; Xiang, Q.; King, T.-J.; et al. FinFET scaling to 10 nm gate length. In Proceedings of the Digest. International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 2002; pp. 251–254. [Google Scholar]
- Loubet, N.; Hook, T.; Montanini, P.; Yeung, C.; Kanakasabapathy, S.; Guillom, M.; Yamashita, T.; Zhang, J.; Miao, X.; Wang, J.; et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In Proceedings of the IEEE Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. T230–T231. [Google Scholar]
- Yang, B.; Buddharaju, K.D.; Teo, S.H.G.; Singh, N.; Lo, G.Q.; Kwong, D.L. Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET. IEEE Electron Device Lett. 2008, 29, 791–794. [Google Scholar] [CrossRef]
- Bangsaruntip, S.; Cohen, G.M.; Majumdar, A.; Zhang, Y.; Engelmann, S.U.; Fuller, N.C.M.; Gignac, L.M.; Mittal, S.; Newbury, J.S.; Guillorn, M.; et al. High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Yeo, K.H.; Suk, S.D.; Li, M.; Yeoh, Y.; Cho, K.H.; Hong, K.; Yun, S.; Lee, M.S.; Cho, N.; Lee, K.; et al. Gate-All-Around (GAA) Twin Silicon Nanowire MOSFET (TSNWFET) with 15 nm Length Gate and 4 nm Radius Nanowires. In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4. [Google Scholar]
- Kato, Y.; Takao, H.; Sawada, K.; Ishida, M. The Characteristic Improvement of Si (111) Metal–Oxide–Semiconductor Field-Effect Transistor by Long-Time Hydrogen Annealing. Jpn. J. Appl. Phys. 2004, 43, 6848–6853. [Google Scholar] [CrossRef]
- Xiong, W.; Gebara, G.; Zaman, J.; Gostkowski, M.; Nguyen, B.; Smith, G.; Lewis, D.; Cleavelin, C.R.; Wise, R.; Yu, S.; et al. Improvement of FinFET electrical characteristics by hydrogen annealing. IEEE Electron Device Lett. 2004, 25, 541–543. [Google Scholar] [CrossRef]
- Pollack, G.P.; Richardson, W.F.; Malhi, S.D.S.; Bonifield, T.; Shichijo, H.; Banerjee, S.; Elahy, M.; Shah, A.H.; Womack, R.; Chatterjee, P.K. Hydrogen passivation of PolySilicon MOSFET’s from a plasma Nitride source. IEEE Electron Device Lett. 1984, 5, 468–470. [Google Scholar] [CrossRef]
- Schleich, C.; Berens, J.; Rzepa, G.; Pobegen, G.; Rescher, G.; Tyaginov, S.; Grasser, T.; Waltl, M. Physical Modeling of Bias Temperature Instabilities in SiC MOSFETs. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019. [Google Scholar]
- Pippel, E.; Woltersdorf, J.; Olafsson, H.Ö.; Sveinbjörnsson, E.Ö. Interfaces between 4H-SiC and SiO2: Microstructure, nanochemistry, and near-interface traps. J. Appl. Phys. 2005, 97, 034302. [Google Scholar] [CrossRef] [Green Version]
- Berens, J.; Rasinger, F.; Aichinger, T.; Heuken, M.; Krieger, M.; Pobegen, G. Detection and Cryogenic Characterization of Defects at the SiO2/4H-SiC Interface in Trench MOSFET. IEEE Trans. Electron Devices 2019, 66, 1213–1217. [Google Scholar] [CrossRef]
- Bravaix, A.; Guerin, C.; Goguenheim, D.; Huard, V.; Roy, D.; Besset, C.; Renard, S.; Randriamihaja, Y.M.; Vincent, E. Off State Incorporation into the 3 Energy Mode Device Lifetime Modeling for Advanced 40 nm CMOS Node. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 55–64. [Google Scholar] [CrossRef]
- Tyaginov, S.; Starkov, I.; Enichlmair, H.; Park, J.; Jungemann, C.; Grasser, T. Physics-Based Hot-Carrier Degradation Models. ECS Trans. 2011, 321–352. [Google Scholar]
- Doyle, B.S.; Mistry, K.R. The characterization of hot carrier damage in p-channel transistors. IEEE Trans. Electron Devices 1993, 40, 152–156. [Google Scholar] [CrossRef]
- Bury, E.; Chasin, A.; Vandemaele, M.; Van Beek, S.; Franco, J.; Kaczer, B.; Linten, D. Array-Based Statistical Characterization of CMOS Degradation Modes and Modeling of the Time-Dependent Variability Induced by Different Stress Patterns in the {VG,VD} bias space. In Proceedings of the 2019 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 31 March–4 April 2019; pp. 1–6. [Google Scholar]
- Cohen, N.L.; Paulsen, R.E.; White, M.H. Observation and characterization of near-interface oxide traps with C-V techniques. IEEE Trans. Electron Devices 1995, 42, 2004–2009. [Google Scholar] [CrossRef] [Green Version]
- Miura, Y.; Matukura, Y. Investigation of Silicon-Silicon Dioxide Interface Using MOS Structure. Jpn. J. Appl. Phys. 1966, 5, 180. [Google Scholar] [CrossRef]
- Grasser, T.; Kaczer, B.; Aichinger, T.; Goes, W.; Nelhiebel, M. Defect Creation Stimulated by Thermally Activated Hole Trapping as the Driving Force Behind Negative Bias Temperature Instability in SiO2, SiON, and High-k Gate Stacks. In Proceedings of the 2008 IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 12–16 October 2008; pp. 91–95. [Google Scholar] [CrossRef]
- Schroder, D.K.; Babcock, J. Negative Bias Temperature Instability: Road to Cross in Deep Submicron Silicon Semiconductor Manufacturing. J. Appl. Phys. 2003, 94, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gerrer, L.; Ding, J.; Amoroso, S.; Adamu-Lema, F.; Hussin, R.; Reid, D.; Millar, C.; Asenov, A. Modelling RTN and BTI in nanoscale MOSFETs from device to circuit: A review. Microelectron. Reliab. 2014, 54, 682–697. [Google Scholar] [CrossRef]
- Onishi, K.; Choi, R.; Kang, C.S.; Cho, H.-J.; Kim, Y.H.; Nieh, R.E.; Han, J.; Krishnan, S.A.; Akbar, M.S.; Lee, J.C. Bias-temperature instabilities of polysilicon gate HfO/sub 2/ MOSFETs. IEEE Trans. Electron Devices 2003, 50, 1517–1524. [Google Scholar] [CrossRef]
- Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Aymerich, X. Time-Dependent Variability Related to BTI Effects in MOSFETs: Impact on CMOS Differential Amplifiers. IEEE Trans. Device Mater. Reliab. 2009, 9, 305–310. [Google Scholar] [CrossRef]
- Kaczer, B.; Grasser, T.; Roussel, P.J.; Franco, J.; Degraeve, R.; Ragnarsson, L.A.; Simoen, E.; Groeseneken, G.; Reisinger, H. Origin of NBTI Variability in Deeply Scaled pFETs. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 26–32. [Google Scholar] [CrossRef]
- Reisinger, H.; Blank, O.; Heinrigs, W.; Muhlhoff, A.; Gustin, W.; Schlunder, C. Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast VT–Measurements. In Proceedings of the 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, CA, USA, 26–30 March 2006; pp. 448–453. [Google Scholar] [CrossRef]
- Ralls, K.S.; Skocpol, W.J.; Jackel, L.D.; Howard, R.E.; Fetter, L.A.; Epworth, R.W.; Tennant, D.M. Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency () Noise. Phys. Rev. Lett. 1984, 52, 228–231. [Google Scholar] [CrossRef]
- Uren, M.J.; Day, D.J.; Kirton, M.J. 1/f and Random Telegraph Noise in Silicon Metal-Oxide-Semiconductor Field-Effect Transistors. Appl. Phys. Lett. 1985, 47, 1195–1197. [Google Scholar] [CrossRef]
- Nagumo, T.; Takeuchi, K.; Yokogawa, S.; Imai, K.; Hayashi, Y. New analysis methods for comprehensive understanding of Random Telegraph Noise. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Tega, N.; Miki, H.; Pagette, F.; Frank, D.J.; Ray, A.; Rooks, M.J.; Haensch, W.; Torii, K. Increasing threshold voltage variation due to random telegraph noise in FETs as gate lengths scale to 20 nm. In Proceedings of the IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 15–17 June 2009; pp. 50–51. [Google Scholar]
- Veksler, D.; Bersuker, G.; Vandelli, L.; Padovani, A.; Larcher, L.; Muraviev, A.; Chakrabarti, B.; Vogel, E.; Gilmer, D.C.; Kirsch, P.D. Random telegraph noise (RTN) in scaled RRAM devices. In Proceedings of the 2013 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 14–18 April 2013; pp. MY.10.1–MY.10.4. [Google Scholar] [CrossRef]
- Wang, R.; Guo, S.; Zhang, Z.; Zou, J.; Mao, D.; Huang, R. Complex Random Telegraph Noise (RTN): What Do We Understand? In Proceedings of the 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, 16–19 July 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Simicic, M.; Weckx, P.; Parvais, B.; Roussel, P.; Kaczer, B.; Gielen, G. Understanding the Impact of Time-Dependent Random Variability on Analog ICs: From Single Transistor Measurements to Circuit Simulations. IEEE Trans. VLSI Syst. 2019, 27, 601–610. [Google Scholar] [CrossRef]
- Grasser, T.; Reisinger, H.; Wagner, P.J.; Goes, W.; Schanovsky, F.; Kaczer, B. The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 16–25. [Google Scholar] [CrossRef]
- Grasser, T.; Reisinger, H.; Wagner, P.J.; Kaczer, B. The Time Dependent Defect Spectroscopy for the Characterization of Border Traps in Metal-Oxide-Semiconductor Transistors. Phys. Rev. B 2010, 82, 245318. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.R.; Wittmann, F.; Gossner, H.; Eisele, I. Hysteresis behavior in 85-nm channel length vertical n-MOSFETs grown by MBE. IEEE Trans. Electron Devices 1996, 43, 973–976. [Google Scholar] [CrossRef]
- Chatty, K.; Banerjee, S.; Chow, T.P.; Gutmann, R.J. Hysteresis in transfer characteristics in 4H-SiC depletion/accumulation-mode MOSFETs. IEEE Electron Device Lett. 2002, 23, 330–332. [Google Scholar] [CrossRef]
- Pacelli, A.; Lacaita, A.L.; Villa, S.; Perron, L. Reliable extraction of MOS interface traps from low-frequency CV measurements. IEEE Electron Device Lett. 1998, 19, 148–150. [Google Scholar] [CrossRef]
- Romanjek, K.; Andrieu, F.; Ernst, T.; Ghibaudo, G. Improved split C-V method for effective mobility extraction in sub-0.1-μm Si MOSFETs. IEEE Electron Device Lett. 2004, 25, 583–585. [Google Scholar] [CrossRef]
- Lang, D.V. Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys. 1974, 45, 3023–3032. [Google Scholar] [CrossRef]
- Bains, S.K.; Banbury, P.C. AC hopping conductivity and DLTS studies on electron-irradiated boron-doped silicon. Semicond. Sci. Technol. 1987, 2, 20–29. [Google Scholar] [CrossRef]
- Scholz, F.; Hwang, J.; Schroder, D. Low frequency noise and DLTS as semiconductor device characterization tools. Solid-State Electron. 1988, 31, 205–217. [Google Scholar] [CrossRef]
- McLarty, P.K.; Ioannou, D.E.; Colinge, J.P. Bulk traps in ultrathin SIMOX MOSFET’s by current DLTS. IEEE Electron Device Lett. 1988, 9, 545–547. [Google Scholar] [CrossRef]
- McLarty, P.K.; Ioannou, D.E. DLTS analysis of carrier generation transients in thin SOI MOSFETs. IEEE Trans. Electron Devices 1990, 37, 262–266. [Google Scholar] [CrossRef]
- Denais, M.; Parthasarathy, C.; Ribes, G.; Rey-Tauriac, Y.; Revil, N.; Bravaix, A.; Huard, V.; Perrier, F. On-the-Fly Characterization of NBTI in Ultra–Thin Gate Oxide pMOSFET’s. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; pp. 109–112. [Google Scholar] [CrossRef]
- Deora, S.; Maheta, V.D.; Islam, A.E.; Alam, M.A.; Mahapatra, S. A Common Framework of NBTI Generation and Recovery in Plasma-Nitrided SiON p-MOSFETs. IEEE Electron Device Lett. 2009, 30, 978–980. [Google Scholar] [CrossRef] [Green Version]
- Bezza, A.; Rafik, M.; Roy, D.; Federspiel, X.; Mora, P.; Ghibaudo, G. Frequency dependence of TDDB PBTI with OTF monitoring methodology in high-k/metal gate stacks. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 1–5 June 2014; pp. GD.6.1–GD.6.4. [Google Scholar]
- Lelis, A.J.; Habersat, D.; Green, R.; Ogunniyi, A.; Gurfinkel, M.; Suehle, J.; Goldsman, N. Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements. IEEE Trans. Electron Devices 2008, 55, 1835–1840. [Google Scholar] [CrossRef]
- Waltl, M.; Grill, A.; Rzepa, G.; Goes, W.; Franco, J.; Kaczer, B.; Mitard, J.; Grasser, T. Superior NBTI in high-k SiGe Transistors-Part I: Experimental. IEEE Trans. Electron Devices 2017, 64, 2092–2098. [Google Scholar] [CrossRef]
- Kerber, A.; Kerber, M. Fast Wafer Level Data Acquisition for Reliability Characterization of Sub-100 nm CMOS Technologies. In Proceedings of the IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 13–15 December 2004; pp. 41–45. [Google Scholar] [CrossRef]
- Du, G.A.; Ang, D.S.; Teo, Z.Q.; Hu, Y.Z. Ultrafast Measurement on NBTI. IEEE Electron Device Lett. 2009, 30, 275–277. [Google Scholar] [CrossRef]
- Yu, X.; Lu, J.; Liu, W.; Qu, Y.; Zhao, Y. Ultra-fast (ns-scale) Characterization of NBTI Behaviors in Si pFinFETs. IEEE J. Electron Devices Soc. 2020, 8, 577–583. [Google Scholar] [CrossRef]
- Waltl, M. Ultra-Low Noise Defect Probing Instrument for Defect Spectroscopy of MOS Transistors. IEEE Trans. Device Mater. Reliab. 2020, 20, 242–250. [Google Scholar] [CrossRef]
- Reisinger, H.; Grasser, T.; Gustin, W.; Schlünder, C. The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 7–15. [Google Scholar] [CrossRef]
- Rzepa, G.; Franco, J.; O’Sullivan, B.J.; Subirats, A.; Simicic, M.; Hellings, G.; Weckx, P.; Jech, M.; Knobloch, T.; Waltl, M.; et al. Comphy—A Compact-Physics Framework for Unified Modeling of BTI. Microelectron. Reliab. 2018, 85, 49–65. [Google Scholar] [CrossRef]
- Kaneta, C.; Yamasaki, T.; Uchiyama, T.; Uda, T.; Terakura, K. Structure and electronic property of Si(100)SiO2 interface. Microelectron. Eng. 1999, 48, 117–120. [Google Scholar] [CrossRef]
- Yamashita, Y.; Yamamoto, S.; Mukai, K.; Yoshinobu, J.; Harada, Y.; Tokushima, T.; Takeuchi, T.; Takata, Y.; Shin, S.; Akagi, K.; et al. Direct observation of site-specific valence electronic structure at the SiO2/Si interface. Phys. Rev. B 2006, 73, 045336. [Google Scholar] [CrossRef] [Green Version]
- Huiwen, Z.; Yongsong, L.; Lingfeng, M.; Jingqin, S.; Zhiyan, Z.; Weihua, T. Theoretical study of the SiO2/Si interface and its effect on energy band profile and MOSFET gate tunneling current. J. Semicond. 2010, 31, 082003. [Google Scholar] [CrossRef]
- Ullmann, B.; Puschkarsky, K.; Waltl, M.; Reisinger, H.; Grasser, T. Evaluation of Advanced MOSFET Threshold Voltage Drift Measurement Techniques. IEEE Trans. Device Mater. Reliab. 2019, 19, 358–362. [Google Scholar] [CrossRef]
- Schroeder, D. Negative Bias Temperature Instability: What do we understand? Microelectron. Reliab. 2007, 47, 841–852. [Google Scholar] [CrossRef]
- Waltl, M.; Goes, W.; Rott, K.; Reisinger, H.; Grasser, T. A Single-Trap Study of PBTI in SiON nMOS Transistors: Similarities and Differences to the NBTI/pMOS Case. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 1–5 June 2014; pp. XT18.1–XT18.5. [Google Scholar] [CrossRef]
- Wang, K.L.; Evwaraye, A.O. Determination of interface and bulk-trap states of IGFET’s using deep-level transient spectroscopy. J. Appl. Phys. 1976, 47, 4574–4577. [Google Scholar] [CrossRef]
- Toledano-Luque, M.; Kaczer, B.; Simoen, E.; Roussel, P.; Veloso, A.; Grasser, T.; Groeseneken, G. Temperature and Voltage Dependences of the Capture and Emission Times of Individual Traps in High-k Dielectrics. Microelectron. Eng. 2011, 88, 1243–1246. [Google Scholar] [CrossRef]
- Toledano-Luque, M.; Kaczer, B.; Roussel, P.; Cho, M.; Grasser, T.; Groeseneken, G. Temperature Dependence of the Emission and Capture Times of SiON Individual Traps after Positive Bias Temperature Stress. J. Vac. Sci. Technol. Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2010, 29, 1–2. [Google Scholar] [CrossRef]
- Kaczer, B.; Grasser, T.; Martin-Martinez, J.; Simoen, E.; Aoulaiche, M.; Roussel, P.; Groeseneken, G. NBTI from the Perspective of Defect States with Widely Distributed Time Scales. In Proceedings of the 2009 IEEE International Reliability Physics Symposium, Montreal, QC, Canada, 26–30 April 2009; pp. 55–60. [Google Scholar] [CrossRef]
- Kaczer, B.; Franco, J.; Weckx, P.; Roussel, P.J.; Bury, E.; Cho, M.; Degraeve, R.; Linten, D.; Groeseneken, G.; Kukner, H.; et al. The defect-centric perspective of device and circuit reliability—From individual defects to circuits. In Proceedings of the 2015 45th European Solid State Device Research Conference (ESSDERC), Graz, Austria, 14–18 September 2015; pp. 218–225. [Google Scholar]
- Toledano-Luque, M.; Kaczer, B.; Roussel, P.J.; Franco, J.; Ragnarsson, L.A.; Grasser, T.; Groeseneken, G. Depth localization of positive charge trapped in silicon oxynitride field effect transistors after positive and negative gate bias temperature stress. Appl. Phys. Lett. 2011, 98, 183506. [Google Scholar] [CrossRef]
- Stampfer, B.; Schanovsky, F.; Grasser, T.; Waltl, M. Semi-Automated Extraction of the Distribution of Single Defects for nMOS Transistors. Micromachines 2020, 11, 446. [Google Scholar] [CrossRef] [PubMed]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Bernard, A.; Bos-Levenbach, E.J. The Plotting of Observations on Probability-Paper; Stichting Mathematisch Centrum: Amsterdam, The Netherlands, 1955. [Google Scholar]
- Hudak, D.; Tiryakioğlu, M. On estimating percentiles of the Weibull distribution by the linear regression method. J. Mater. Sci. 2009, 44, 1959–1964. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Hudak, D. On estimating Weibull modulus by the linear regression method. J. Mater. Sci. 2007, 42, 10173–10179. [Google Scholar] [CrossRef]
- McPherson, J.W. Reliability Physics and Engineering: Time-To-Failure Modeling; Springer: Berlin, Germany, 2010. [Google Scholar]
- Huard, V.; Denais, M.; Parthasarathy, C. NBTI degradation: From physical mechanisms to modelling. Microelectron. Reliab. 2006, 46, 1–23. [Google Scholar] [CrossRef]
- Tewksbury, T. Relaxation Effects in MOS Devices due to Tunnel Exchange with Near-Interface Oxide Traps. Ph.D. Thesis, MIT, Cambridge, MA, USA, 1992. [Google Scholar]
- Shen, C.; Li, M.; Foo, C.E.; Yang, T.; Huang, D.M.; Yap, A.; Samudra, G.S.; Yeo, Y. Characterization and Physical Origin of Fast Vth Transient in NBTI of pMOSFETs with SiON Dielectric. In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4. [Google Scholar]
- Islam, A.E.; Kufluoglu, H.; Varghese, D.; Mahapatra, S.; Alam, M.A. Recent Issues in Negative-Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects, and Relaxation. IEEE Trans. Electron Devices 2007, 54, 2143–2154. [Google Scholar] [CrossRef] [Green Version]
- Grasser, T.; Kaczer, B.; Goes, W.; Aichinger, T.; Hehenberger, P.; Nelhiebel, M. A Two-Stage Model for Negative Bias Temperature Instability. In Proceedings of the 2009 IEEE International Reliability Physics Symposium, Montreal, QC, Canada, 26–30 April 2009; pp. 33–44. [Google Scholar]
- Campbell, J.P.; Lenahan, P.M.; Cochrane, C.J.; Krishnan, A.T.; Krishnan, S. Atomic-scale defects involved in the negative-bias temperature instability. IEEE Trans. Device Mater. Reliab. 2007, 7, 540–557. [Google Scholar] [CrossRef]
- Grasser, T.; Reisinger, H.; Goes, W.; Aichinger, T.; Hehenberger, P.; Wagner, P.; Nelhiebel, M.; Franco, J.; Kaczer, B. Switching Oxide Traps as the Missing Link between Negative Bias Temperature Instability and Random Telegraph Noise. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 729–732. [Google Scholar]
- Weissman, M. 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 1988, 60, 537–571. [Google Scholar] [CrossRef]
- Fleetwood, D.M.; Xiong, H.D.; Lu, Z.; Nicklaw, C.J.; Felix, J.A.; Schrimpf, R.D.; Pantelides, S.T. Unified model of hole trapping, 1/f noise, and thermally stimulated current in MOS devices. IEEE Trans. Nucl. Sci. 2002, 49, 2674–2683. [Google Scholar] [CrossRef]
- Kirton, M.; Uren, M. Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise. Adv. Phys. 1989, 38, 367–468. [Google Scholar] [CrossRef]
- Henry, C.; Lang, D. Nonradiative Capture and Recombination by Multiphonon Emission in GaAs and GaP. Phys. Rev. B 1977, 15, 989–1016. [Google Scholar] [CrossRef]
- Lelis, A.J.; Oldham, T.R. Time dependence of switching oxide traps. IEEE Trans. Nucl. Sci. 1994, 41, 1835–1843. [Google Scholar] [CrossRef] [Green Version]
- Schanovsky, F. Atomistic Modeling in the Context of the Bias Temperature Instability. Ph.D. Thesis, TU Wien, Vienna, Austria, 2013. [Google Scholar]
- Lenahan, P.M.; Conley, J.F. What can electron paramagnetic resonance tell us about the Si/SiO2 system? J. Vac. Sci. Technol. Microelectron. Nanometer Struct. Process. Meas. Phenom. 1998, 16, 2134–2153. [Google Scholar] [CrossRef] [Green Version]
- Lenahan, P.M.; Campbell, J.P.; Krishnan, A.T.; Krishnan, S. A Model for NBTI in Nitrided Oxide MOSFETs Which Does Not Involve Hydrogen or Diffusion. IEEE Trans. Device Mater. Reliab. 2011, 11, 219–226. [Google Scholar] [CrossRef]
- de Nijs, J.M.M.; Druijf, K.G.; Afanas’ev, V.V.; van der Drift, E.; Balk, P. Hydrogen induced donor-type Si/SiO2 interface states. Appl. Phys. Lett. 1994, 65, 2428–2430. [Google Scholar] [CrossRef]
- Blöchl, P.E.; Stathis, J.H. Aspects of defects in silica related to dielectric breakdown of gate oxides in MOSFETs. Phys. Condens. Matter 1999, 273–274, 1022–1026. [Google Scholar] [CrossRef]
- Grasser, T.; Goes, W.; Wimmer, Y.; Schanovsky, F.; Rzepa, G.; Waltl, M.; Rott, K.; Reisinger, H.; Afanas’ev, V.; Stesmans, A.; et al. On the Microscopic Structure of Hole Traps in pMOSFETs. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014. [Google Scholar]
- El-Sayed, A.M.; Watkins, M.B.; Afanas’ev, V.V.; Shluger, A.L. Nature of intrinsic and extrinsic electron trapping in SiO2. Phys. Rev. B 2014, 89. [Google Scholar] [CrossRef]
- Grasser, T.; Waltl, M.; Goes, W.; Wimmer, Y.; El-Sayed, A.M.; Shluger, A.L.; Kaczer, B. On the volatility of oxide defects: Activation, deactivation, and transformation. In Proceedings of the 2015 IEEE International Reliability Physics Symposium, Monterey, CA, USA, 19–23 April 2015; pp. 5A.3.1–5A.3.8. [Google Scholar]
- Waltl, M.; Rzepa, G.; Grill, A.; Gös, W.; Franco, J.; Kaczer, B.; Witters, L.; Mitard, J.; Horiguchi, N.; Grasser, T. Superior NBTI in High-k SiGe Transistors - Part II: Theory. IEEE Trans. Electron Devices 2017, 64, 2099–2105. [Google Scholar] [CrossRef]
- O’Sullivan, B.J.; Ritzenthaler, R.; Dentoni Litta, E.; Simoen, E.; Machkaoutsan, V.; Fazan, P.; Ji, Y.; Kim, C.; Spessot, A.; Linten, D.; et al. Overview of Bias Temperature Instability in Scaled DRAM Logic for Memory Transistors. IEEE Trans. Device Mater. Reliab. 2020, 20, 258–268. [Google Scholar] [CrossRef]
- Waltl, M. Separation of electron and hole trapping components of PBTI in SiON nMOS transistors. Microelectron. Reliab. 2020, in press. [Google Scholar] [CrossRef]
- Asenov, A.; Balasubramaniam, R.; Brown, A.R.; Davies, J.H. RTS amplitudes in decananometer MOSFETs: 3-D simulation study. IEEE Trans. Electron Devices 2003, 50, 839–845. [Google Scholar] [CrossRef]
- Takeuchi, K.; Nagumo, T.; Yokogawa, S.; Imai, K.; Hayashi, Y. Single-charge-based modeling of transistor characteristics fluctuations based on statistical measurement of RTN amplitude. In Proceedings of the IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 15–17 June 2009; pp. 54–55. [Google Scholar]
- Ghetti, A.; Monzio Compagnoni, C.; Spinelli, A.S.; Visconti, A. Comprehensive Analysis of Random Telegraph Noise Instability and Its Scaling in Deca–Nanometer Flash Memories. IEEE Trans. Electron Devices 2009, 56, 1746–1752. [Google Scholar] [CrossRef]
- Franco, J.; Kaczer, B.; Roussel, P.J.; Mitard, J.; Cho, M.; Witters, L.; Grasser, T.; Groeseneken, G. SiGe Channel Technology: Superior Reliability Toward Ultrathin EOT Devices—Part I: NBTI. IEEE Trans. Electron Devices 2013, 60, 396–404. [Google Scholar] [CrossRef]
- Franco, J.; Kaczer, B.; Toledano-Luque, M.; Roussel, P.J.; Kauerauf, T.; Mitard, J.; Witters, L.; Grasser, T.; Groeseneken, G. SiGe Channel Technology: Superior Reliability Toward Ultra-Thin EOT Devices—Part II: Time-Dependent Variability in Nanoscaled Devices and Other Reliability Issues. IEEE Trans. Electron Devices 2013, 60, 405–412. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waltl, M. Reliability of Miniaturized Transistors from the Perspective of Single-Defects. Micromachines 2020, 11, 736. https://doi.org/10.3390/mi11080736
Waltl M. Reliability of Miniaturized Transistors from the Perspective of Single-Defects. Micromachines. 2020; 11(8):736. https://doi.org/10.3390/mi11080736
Chicago/Turabian StyleWaltl, Michael. 2020. "Reliability of Miniaturized Transistors from the Perspective of Single-Defects" Micromachines 11, no. 8: 736. https://doi.org/10.3390/mi11080736
APA StyleWaltl, M. (2020). Reliability of Miniaturized Transistors from the Perspective of Single-Defects. Micromachines, 11(8), 736. https://doi.org/10.3390/mi11080736