Analysis of Current Variation with Work Function Variation in L-Shaped Tunnel-Field Effect Transistor
Abstract
:1. Introduction
2. Device Structure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.W.; Kim, J.H.; Liu, T.J.K.; Choi, W.Y.; Park, B.G. Demonstration of L-Shaped Tunnel Field-Effect Transistors. IEEE Trans. Electron Devices 2016, 63, 1774–1778. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, W.Y.; Sun, M.C.; Kim, H.W.; Park, B.G. Design guideline of Si-based L-shaped tunneling field-effect transistors. Jpn. J. Appl. Phys. 2012, 51, 06FE09. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.W.; Kim, H.W.; Park, B.G. Vertical type double gate tunnelling FETs with thin tunnel barrier. Electron. Lett. 2015, 51, 718–720. [Google Scholar] [CrossRef]
- Yang, Z. Tunnel Field-Effect Transistor with an L-Shaped Gate. IEEE Electron Device Lett. 2016, 37, 839–842. [Google Scholar] [CrossRef]
- Xie, H.; Liu, H.; Han, T.; Li, W.; Chen, S.; Wang, S. TCAD simulation of a double L-shaped gate tunnel field-effect transistor with a covered source-channel. Micro Nano Lett. 2020, 15, 272–276. [Google Scholar] [CrossRef]
- Jeyanthi, J.E.; Arunsamuel, T.S. Heterojunction Tunnel Field Effect Transistors-A Detailed Review. In Proceedings of the ICDCS 2020-2020 5th International Conference on Devices, Circuits and Systems, Coimbatore, India, 5–6 March 2020; pp. 326–329. [Google Scholar]
- Asra, R.; Shrivastava, M.; Murali, K.V.R.M.; Pandey, R.K.; Gossner, H.; Rao, V.R. A tunnel FET for VDD scaling below 0.6 v with a CMOS-comparable performance. IEEE Trans. Electron Devices 2011, 58, 1855–1863. [Google Scholar] [CrossRef]
- Gandhi, R.; Chen, Z.; Singh, N.; Banerjee, K.; Lee, S. CMOS-Compatible vertical-silicon-nanowire gate-all-around P-Type tunneling FETs with ≤ 5-mV/decade subthreshold swing. IEEE Electron Device Lett. 2011, 32, 1504–1506. [Google Scholar] [CrossRef]
- Lanuzza, M.; Strangio, S.; Crupi, F.; Palestri, P.; Esseni, D. Mixed Tunnel-FET/MOSFET Level Shifters: A New Proposal to Extend the Tunnel-FET Application Domain. IEEE Trans. Electron Devices 2015, 62, 3973–3979. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Sun, M.C.; Park, E.; Kim, J.H.; Kwon, D.W.; Park, B.G. Improvement of current drivability in high-scalable tunnel field-effect transistors with CMOS compatible self-aligned process. Electron. Lett. 2016, 52, 1071–1072. [Google Scholar] [CrossRef]
- Choi, K.M. 32nm high K metal gate (HKMG) designs for low power applications. In Proceedings of the 2008 International SoC Design Conference, Busan, South Korea, 24–25 November 2008; pp. I-68–I-69. [Google Scholar]
- Lee, J.; Lee, R.; Kim, S.; Lee, K.; Kim, H.M.; Kim, S.; Kim, M.; Kim, S.; Lee, J.H.; Park, B.G. Surface Ge-rich p-type SiGe channel tunnel field-effect transistor fabricated by local condensation technique. Solid. State. Electron. 2020, 164, 107701. [Google Scholar] [CrossRef]
- Betti Beneventi, G.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G. Optimization of a pocketed dual-metal-gate TFET by means of TCAD simulations accounting for quantization-induced bandgap widening. IEEE Trans. Electron Devices 2015, 62, 44–51. [Google Scholar] [CrossRef]
- Choi, K.M.; Choi, W.Y. Work-function variation effects of tunneling field-effect transistors (TFETs). IEEE Electron Device Lett. 2013, 34, 942–944. [Google Scholar] [CrossRef]
- Lee, Y.; Nam, H.; Park, J.D.; Shin, C. Study of work-function variation for high-κ/metal-gate Ge-source tunnel field-effect transistors. IEEE Trans. Electron Devices 2015, 62, 2143–2147. [Google Scholar] [CrossRef]
- Saha, R.; Bhowmick, B.; Baishya, S. Effect of gate dielectric on electrical parameters due to metal gate WFV in n-channel Si step FinFET. Micro Nano Lett. 2018, 13, 1007–1010. [Google Scholar] [CrossRef]
- Saha, R.; Bhowmick, B.; Baishya, S. Impact of WFV on electrical parameters due to high-k/metal gate in SiGe channel tunnel FET. Microelectron. Eng. 2019, 214, 1–4. [Google Scholar] [CrossRef]
- Avci, U.E.; Morris, D.H.; Hasan, S.; Kotlyar, R.; Kim, R.; Rios, R.; Nikonov, D.E.; Young, I.A. Energy efficiency comparison of nanowire heterojunction TFET and Si MOSFET at Lg = 13nm, including P-TFET and variation considerations. In Proceedings of the Technical Digest–International Electron Devices Meeting, IEDM, Washington, DC, USA, 9–11 December 2013; pp. 33.4.1–33.4.4. [Google Scholar]
- Dadgour, H.; De, V.; Banerjee, K. Statistical modeling of metal-gate work-function variability in emerging device technologies and implications for circuit design. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, San Jose, CA, USA, 10–13 November 2008; pp. 270–277. [Google Scholar]
- Kim, G.; Kim, J.H.; Kim, J.; Kim, S. Analysis of Work-Function Variation Effects in a Tunnel Field-Effect Transistor Depending on the Device Structure. Appl. Sci. 2020, 10, 5378. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Grubbs, M.; Deal, M.; Magyari-Köpe, B.; Clemens, B.M.; Nishi, Y. Physical model of the impact of metal grain work function variability on emerging dual metal gate MOSFETs and its implication for SRAM reliability. In Proceedings of the Technical Digest–International Electron Devices Meeting, IEDM, Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Frye, A.; Galyon, G.T.; Palmer, L. Crystallographic texture and whiskers in electrodeposited tin films. IEEE Trans. Electron. Packag. Manuf. 2007, 30, 2–10. [Google Scholar] [CrossRef]
- Kim, G.; Lee, J.; Kim, J.H.; Kim, S. High on-current Ge-channel heterojunction tunnel field-effect transistor using direct band-to-band tunneling. Micromachines 2019, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.W.; Kim, H.W.; Kim, J.H.; Park, E.; Lee, J.; Kim, W.; Kim, S.; Lee, J.H.; Park, B.G. Effects of Localized Body Doping on Switching Characteristics of Tunnel FET Inverters with Vertical Structures. IEEE Trans. Electron Devices 2017, 64, 1799–1805. [Google Scholar] [CrossRef]
- Shin, S.S.; Kim, J.H.; Kim, S. L-shaped tunnel FET with stacked gates to suppress the corner effect. Jpn. J. Appl. Phys. 2019, 58, SDDE10. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, W.Y.; Kim, H.; Sun, M.C.; Kim, H.W.; Park, B.G. Investigation on hump effects of L-shaped tunneling filed-effect transistors. In Proceedings of the 2012 IEEE Silicon Nanoelectronics Workshop, SNW 2012, Honolulu, HI, USA, 10–11 June 2012; pp. 1–2. [Google Scholar]
- Kim, S.W.; Choi, W.Y. Hump Effects of Germanium/Silicon Heterojunction Tunnel Field-Effect Transistors. IEEE Trans. Electron Devices 2016, 63, 2583–2588. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S. Study on the nonlinear output characteristic of tunnel field-effect transistor. J. Semicond. Technol. Sci. 2020, 20, 159–162. [Google Scholar] [CrossRef]
- Synopsys, Inc. Sentaurus Device User Guide; Synopsys Inc.: Mountain View, CA, USA, 2015; Available online: http://www.sentaurus.dsod.pl/manuals/data/sdevice_ug.pdf (accessed on 14 August 2020).
- Kane, E.O. Theory of tunneling. J. Appl. Phys. 1961, 32, 83–91. [Google Scholar] [CrossRef]
- Biswas, A.; Dan, S.S.; Le Royer, C.; Grabinski, W.; Ionescu, A.M. TCAD simulation of SOI TFETs and calibration of non-local band-to-band tunneling model. Microelectron. Eng. 2012, 98, 334–337. [Google Scholar] [CrossRef]
- Biswas, A.; Alper, C.; De Michielis, L.; Ionescu, A.M. New tunnel-FET architecture with enhanced ION and improved Miller Effect for energy efficient switching. In Proceedings of the Device Research Conference–Conference Digest, DRC, University Park, PA, USA, 18–20 June 2012; pp. 131–132. [Google Scholar]
- Paasch, G.; Übensee, H. A Modified Local Density Approximation. Electron Density in Inversion Layers. Phys. Status Solidi 1982, 113, 165–178. [Google Scholar] [CrossRef]
- Singh, S.; Raj, B. Vertical Tunnel-FET Analysis for Excessive Low Power Digital Applications. In Proceedings of the ICSCCC 2018–1st International Conference on Secure Cyber Computing and Communications, Jalandhar, India, 15–17 December 2018; pp. 192–197. [Google Scholar]
- Ji, S.; Kim, H.; Cho, I.H. Characteristics of recess structure tunneling field effect transistor for high on current drivability. J. Semicond. Technol. Sci. 2018, 18, 360–366. [Google Scholar] [CrossRef]
- Jhaveri, R.; Nagavarapu, V.; Woo, J.C.S. Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect Transistor. IEEE Trans. Electron Devices 2011, 58, 80–86. [Google Scholar] [CrossRef]
- Low, K.L.; Zhan, C.; Han, G.; Yang, Y.; Goh, K.H.; Guo, P.; Toh, E.H.; Yeo, Y.C. Device physics and design of a L-shaped germanium source tunneling transistor. Jpn. J. Appl. Phys. 2012, 51, 02BC04. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Zhuang, Y.; Yan, Z.; Guo, J.; Han, R. Optimization of L-shaped tunneling field-effect transistor for ambipolar current suppression and Analog/RF performance enhancement. Superlattices Microstruct. 2018, 115, 154–167. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, J.U.; Kim, G.; Jee, D.W.; Kim, J.H.; Kim, S. Rigorous study on hump phenomena in surrounding channel nanowire (SCNW) tunnel field-effect transistor (TFET). Appl. Sci. 2020, 10, 3596. [Google Scholar] [CrossRef]
- Anghel, C.; Gupta, A.; Amara, A.; Vladimirescu, A. 30-nm tunnel FET with improved performance and reduced ambipolar current. IEEE Trans. Electron Devices 2011, 58, 1649–1654. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.P.; Kim, S.W.; Sun, M.C.; Kim, G.; Kim, J.H.; Park, E.; Kim, H.; Park, B.G. Schottky barrier tunnel field-effect transistor using spacer technique. J. Semicond. Technol. Sci. 2014, 14, 572–578. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value | |
---|---|---|
Device | L-shaped TFET | Planar TFET |
Source doping concentration (NS) | 1020 cm−3 (p-type) | |
Drain doping concentration (ND) | 1020 cm−3 (n-type) | |
Body doping concentration (NB) | 1017 cm−3 (p-type) | |
Channel length (Lch) | 50 nm | |
Channel width (W) | 30 nm | |
Metal grain size | 10 nm | |
Intrinsic layer thickness (TSi) | 6 nm | none |
Gate oxide thickness (TOX) | 1 nm | |
Drain voltage (VD) | 1.0 V | |
Source height (HS) | varied |
Definition | Model |
---|---|
Bandgap narrowing | Old slot boom |
Fermi Statistic | Fermi |
Phonon scattering | Constant mobility |
Multi-valley for quantum confinement | MLDA |
SRH recombination | SRH/TAT |
Nonlocal BTBT | Band to Band |
WFV | 4.6/4.4 eV (60%/40%) (Random generation) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Kim, H.W.; Song, Y.S.; Kim, S.; Kim, G. Analysis of Current Variation with Work Function Variation in L-Shaped Tunnel-Field Effect Transistor. Micromachines 2020, 11, 780. https://doi.org/10.3390/mi11080780
Kim JH, Kim HW, Song YS, Kim S, Kim G. Analysis of Current Variation with Work Function Variation in L-Shaped Tunnel-Field Effect Transistor. Micromachines. 2020; 11(8):780. https://doi.org/10.3390/mi11080780
Chicago/Turabian StyleKim, Jang Hyun, Hyun Woo Kim, Young Suh Song, Sangwan Kim, and Garam Kim. 2020. "Analysis of Current Variation with Work Function Variation in L-Shaped Tunnel-Field Effect Transistor" Micromachines 11, no. 8: 780. https://doi.org/10.3390/mi11080780
APA StyleKim, J. H., Kim, H. W., Song, Y. S., Kim, S., & Kim, G. (2020). Analysis of Current Variation with Work Function Variation in L-Shaped Tunnel-Field Effect Transistor. Micromachines, 11(8), 780. https://doi.org/10.3390/mi11080780