Hybrid Piezo/Magnetic Electromechanical Transformer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Overview
2.2. Open-Circuit Voltage Gain and Frequency Response
- Step-up transformer type: the input current is fixed in an attempt to minimize the input voltage, and thus the input power, at the electromagnetic coil.
- Step-down transformer type: the input power is fixed in order to minimize the input voltage across the piezoelectric elements. Note that the input voltage was adjusted in the vicinity of 1 V while its frequency was varied to maintain a constant supplied power during this test.
2.3. Optimum Load Resistance
3. System Simulation
4. Experimental Validation
4.1. Prototype Fabrication
4.2. Step-up Transformer
4.3. Step-down Transformer
4.4. Charging Characteristics
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carazo, A.V. Piezoelectric Transformers: An Historical Review. Actuators 2016, 5, 12. [Google Scholar] [CrossRef]
- Seher, M.; Nagy, P.B. On the separation of Lorentz and magnetization forces in the transduction mechanism of Electromagnetic Acoustic Transducers (EMATs). NDT E Int. 2016, 84, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rosen, C.A.; Fish, K.A.; Rothenberg, H.C. Electromechanical Transducer. U.S. Patent US2830274A, 8 April 1958. [Google Scholar]
- Wells, E. Comparing Magnetic and Piezoelectric Transformer Approaches in CCFL Applications. Analog. Appl. J. 2002, 7. [Google Scholar]
- Li, X.; Maurya, D.; Carazo, A.V.; Sanghadasa, M.; Priya, S. Tunable High-Power Multilayer Piezoelectric Transformer. IEEE Trans. Ind. Electron. 2019, 67, 8335–8343. [Google Scholar] [CrossRef]
- Ekhtiari, M.; Zhang, Z.; Andersen, M.A.E. State-of-the-art piezoelectric transformer-based switch mode power supplies. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 5072–5078. [Google Scholar]
- Barham, O.M.; Mirzaeimoghri, M.; DeVoe, D.L. Piezoelectric Disc Transformer Modeling Utilizing Extended Hamilton’s Principle. IEEE Trans. Power Electron. 2018, 34, 6583–6592. [Google Scholar] [CrossRef]
- Horsley, E.; Foster, M.; Stone, D. State-of-the-art Piezoelectric Transformer technology. In Proceedings of the 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 2–5 September 2007; pp. 1–10. [Google Scholar]
- Bedair, S.S.; Pulskamp, J.S.; Polcawich, R.G.; Morgan, B.; Martin, J.L.; Power, B. Thin-Film Piezoelectric-on-Silicon Resonant Transformers. J. Microelectromech. Syst. 2013, 22, 1383–1394. [Google Scholar] [CrossRef]
- Morgan, B.; Bedair, S.S.; Pulskamp, J.S.; Polcawich, R.G.; Meyer, C.D.; Dougherty, C.; Lin, X.; Arnold, D.P.; Bashirullah, R.; Miller, R.; et al. Power considerations for MAST platforms. In Proceedings of the Micro- and Nanotechnology Sensors, Systems, and Applications, Orlando, FL, USA, 23 April 2010. [Google Scholar]
- Bassirian, P.; Moody, J.; Lu, R.; Gao, A.; Manzaneque, T.; Roy, A.; Barker, N.S.; Calhoun, B.H.; Gong, S.; Bowers, S.M. Nanowatt-Level Wakeup Receiver Front Ends Using MEMS Resonators for Impedance Transformation. IEEE Trans. Microw. Theory Tech. 2019, 67, 1615–1627. [Google Scholar] [CrossRef]
- Yadav, K.; Kymissis, I.; Kinget, P.R. Wake-Up Receiver Using Ultrasound Data. IEEE J. Solid State Circuits 2013, 48, 649–660. [Google Scholar] [CrossRef]
- Martinez, T.; Pillonnet, G.; Costa, F. A 12 MV start-up converter using piezoelectric transformer for energy harvesting applications. J. Physics: Conf. Ser. 2016, 773, 012028. [Google Scholar] [CrossRef]
- Camarda, A.; Romani, A.; Tartagni, M. Piezoelectric Transformers for Ultra-low Voltage Energy Harvesting Applications. Procedia Eng. 2014, 87, 1521–1524. [Google Scholar] [CrossRef] [Green Version]
- Camarda, A.; Sordo, G.; Iannacci, J.; Schneider, M.; Schmid, U.; Tartagni, M.; Romani, A. Fabrication and Electromechanical Modeling of a Flexural-Mode MEMS Piezoelectric Transformer in AlN. J. Microelectromech. Syst. 2017, 26, 1110–1121. [Google Scholar] [CrossRef]
- Martinez, T.; Pillonnet, G.; Costa, F. A 15-mV Inductor-Less Start-up Converter Using a Piezoelectric Transformer for Energy Harvesting Applications. IEEE Trans. Power Electron. 2018, 33, 2241–2253. [Google Scholar] [CrossRef]
- Forrester, J.; Davidson, J.N.; Foster, M.P.; Stone, D.A. Influence of Spurious Modes on the Efficiency of Piezoelectric Transformers: A Sensitivity Analysis. IEEE Trans. Power Electron. 2020, 36, 617–629. [Google Scholar] [CrossRef]
- Horsley, E.L.; Carazo, A.V.; Foster, M.P.; Stone, D. A Lumped Equivalent Circuit Model for the Radial Mode Piezoelectric Transformer. In Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009; pp. 1747–1753. [Google Scholar]
- Uchino, K.; Koc, B.; Laoratanakul, P.; Carazo, A.V. Piezoelectric transformers. Ferroelectrics 2001, 263, 91–100. [Google Scholar] [CrossRef]
- Cheng, S.; Natarajan, R.D.; Arnold, D.P. Experimental Demonstration of an Electrodynamic Transformer. IEEE Trans. Magn. 2011, 47, 4433–4436. [Google Scholar] [CrossRef]
- Cheng, S.; Arnold, D.P. Microfabricated electrodynamic transformers for electromechanical power conversion. J. Micromech. Microengineering 2013, 23, 114002. [Google Scholar] [CrossRef]
- Cheng, S. Theory, Design, and Application of Electrodynamic Transformers. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2011. [Google Scholar]
- Halim, M.A.; Park, J.-Y. Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation. Sens. Actuators A Phys. 2014, 208, 56–65. [Google Scholar] [CrossRef]
- Cheng, S.; Cepnik, C.; Arnold, D.P. Electrodynamic vibrational energy harvesting. In Micro Energy Harvesting; Briand, E.D., Yeatman, E., Roundy, S., Eds.; Wiley-VCH: Heinhem, Germany, 2015; pp. 175–200. ISBN 978-3-527-31902-2. [Google Scholar]
- Halim, M.A.; Kabir, M.H.; Cho, H.; Park, J.Y. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion. Micromachines 2019, 10, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halim, M.A.; Rendon-Hernandez, A.A.; Smith, S.E.; Arnold, D.P. A chip-sized piezoelectric receiver for low-frequency, near-field wireless power transfer: Design, modeling and experimental validation. Smart Mater. Struct. 2021, 30, 045011. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendon-Hernandez, A.A.; Smith, S.E.; Halim, M.A.; Arnold, D.P. Hybrid Piezo/Magnetic Electromechanical Transformer. Micromachines 2021, 12, 1214. https://doi.org/10.3390/mi12101214
Rendon-Hernandez AA, Smith SE, Halim MA, Arnold DP. Hybrid Piezo/Magnetic Electromechanical Transformer. Micromachines. 2021; 12(10):1214. https://doi.org/10.3390/mi12101214
Chicago/Turabian StyleRendon-Hernandez, Adrian A., Spencer E. Smith, Miah A. Halim, and David P. Arnold. 2021. "Hybrid Piezo/Magnetic Electromechanical Transformer" Micromachines 12, no. 10: 1214. https://doi.org/10.3390/mi12101214
APA StyleRendon-Hernandez, A. A., Smith, S. E., Halim, M. A., & Arnold, D. P. (2021). Hybrid Piezo/Magnetic Electromechanical Transformer. Micromachines, 12(10), 1214. https://doi.org/10.3390/mi12101214