Influence of Temperature on Exciton Dynamic Processes in CuPc/C60 Based Solar Cells
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Song, Q.L.; Li, C.M.; Wang, M.L.; Sun, X.Y.; Hou, X.Y. Role of buffer in organic solar cells using C60 as an acceptor. Appl. Phys. Lett. 2007, 90, 071109. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, J.; He, R.; Lai, H.; Ren, S.; Jiang, Y.; Wan, Z.; Wang, W.; Hao, X.; Wang, Y.; et al. Unveiling Roles of Tin Fluoride Additives in High-Efficiency Low-Bandgap Mixed Tin-Lead Perovskite Solar Cells. Adv. Energ. Mater. 2021, 11, 2101045. [Google Scholar] [CrossRef]
- He, R.; Zuo, C.; Ren, S.; Zhao, D.; Ding, L. Low-bandgap Sn–Pb perovskite solar cells. J. Semicond. 2021, 42, 060202. [Google Scholar] [CrossRef]
- Yao, J.; Qiu, B.; Zhang, Z.G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; et al. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 2020, 11, 2726. [Google Scholar] [CrossRef]
- Ameen, M.Y.; Pradhan, S.; Suresh, M.R.; Reddy, V. MoO3 anode buffer layer for efficient and stable small molecular organic solar cells. Opt. Mater. 2015, 39, 134–139. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Tan, T.W.; Shi, Y.; Zhao, X.Y.; Mi, B.X.; Gao, Z.Q. An organic semiconductor as an anode-buffer for the improvement of small molecular photovoltaic cells. RSC Adv. 2017, 7, 38204–38209. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Yu, Y.; Zhao, R.; Ding, Z.; Liu, J.; Wang, L. Improving Active Layer Morphology of All-Polymer Solar Cells by Solution Temperature. Macromolecules 2020, 53, 3325–3331. [Google Scholar] [CrossRef]
- Munshi, J.; Chien, T.; Chen, W.; Balasubramanian, G. Elasto-morphology of P3HT:PCBM bulk heterojunction organic solar cells. Soft Matter 2020, 16, 6743–6751. [Google Scholar] [CrossRef] [PubMed]
- Dehaj, M.S.; Ahmadi, M.; Ghazanfarpour, S. Inverted bulk heterojunction organic solar cells using optimization of active layer deposition via controlling of doctor blade parameters. Surf. Interfaces 2020, 21, 100694. [Google Scholar] [CrossRef]
- Li, G.; Yang, T.; Cheng, H.; Zhang, Y.; Wang, J.; Liu, Y. An investigation of annealing methods for benzodithiophene terthiophene rhodanine based all small molecule organic solar cells. Org. Electron. 2020, 87, 105904. [Google Scholar] [CrossRef]
- Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A.J. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv. Funct. Mater. 2005, 15, 1617–1622. [Google Scholar] [CrossRef]
- Stevens, D.M.; Qin, Y.; Hillmyer, M.A.; Frisbie, C.D. Enhancement of the morphology and open circuit voltage in bilayer polymer fullerene. J. Phys. Chem. C 2009, 113, 11408–11415. [Google Scholar] [CrossRef]
- Kim, I.; Jabbour, G.E. Effect of annealing on bulk heterojunction organic solar cells based on copper phthalocyanine and perylene derivative. Synth. Met. 2012, 162, 102–106. [Google Scholar] [CrossRef]
- Karan, S.; Mallik, B. Templating effects and optical characterization of copper (II) phthalocyanine nanocrystallites thin film: Nanoparticles, nanoflowers, nanocabbages, and nanoribbons. J. Phys. Chem. C 2007, 11, 7352–7365. [Google Scholar] [CrossRef]
- Schünemann, C.; Elschner, C.; Levin, A.A.; Levichkova, M.; Leo, K.; Riede, M. Zinc phthalocyanine-Influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Film. 2011, 519, 3939–3945. [Google Scholar] [CrossRef]
- Garcia-Belmonte, G. Temperature dependence of open-circuit voltage in organic solar cells from generation–recombination kinetic balance. Sol. Energy Mater. Sol. Cells 2010, 94, 2166–2169. [Google Scholar] [CrossRef]
- Song, Q.L.; Wu, H.R.; Ding, X.M.; Hou, X.Y.; Li, F.Y.; Zhou, Z.G. Exciton dissociation at the indium tin oxide-N, N′-Bis(naphthalen-1-yl)-N, N′-bis(phenyl) benzidine interface: A transient photovoltage study. Appl. Phys. Lett. 2006, 88, 232101. [Google Scholar] [CrossRef]
- Athanasopoulos, S.; Hoffmann, S.T.; Bassler, H.; Kohler, A.; Beljonne, D. To Hop or Not to Hop? Understanding the Temperature Dependence of Spectral Diffusion in Organic Semiconductors. J. Phys. Chem. Lett. 2013, 4, 1694–1700. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Stafstrom, S. Dynamics of exciton dissociation in donor-acceptor polymer heterojunctions. J. Chem. Phys. 2013, 138, 164905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.; Wilson, M.W.B.; Albert-Seifried, S.; Di Pietro, R.; Friend, R.H. Photophysics of pentacene thin films: The role of exciton fission and heating effects. Phys. Rev. B 2011, 84, 195411. [Google Scholar] [CrossRef]
- Helzel, J.; Jankowski, S.; El Helou, M.; Witte, G.; Heimbrodt, W. Temperature dependent optical properties of pentacene films on zinc oxide. Appl. Phys. Lett. 2011, 99, 211102. [Google Scholar] [CrossRef]
- Faltermeier, D.; Gompf, B.; Dressel, M.; Tripathi, A.K.; Pflaum, J. Optical properties of pentacene thin films and single crystals. Phys. Rev. B 2006, 74, 125416. [Google Scholar] [CrossRef]
- Mikhnenko, O.V.; Azimi, H.; Scharber, M.; Morana, M.; Blom, P.W.M.; Loi, M.A. Exciton diffusion length in narrow bandgap polymers. Energy Environ. Sci. 2012, 5, 6960–6965. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, X.; Lu, G. Exciton diffusion in disordered small molecules for organic photovoltaics: Insights from first-principles simulations. J. Phys. Condens. Matter 2014, 26, 185006. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, Z.; Zhu, T.; Mi, B.; Gao, Z.; Huang, W. Structure optimization of organic planar heterojunction solar cells. J. Phys. D Appl. Phys. 2013, 46, 195105. [Google Scholar] [CrossRef]
- Kumar, H.; Kumar, P.; Chaudhary, N.; Bhardwaj, R.; Chand, S.; Jain, S.C.; Kumar, V. Effect of temperature on the performance of CuPc/C60 photovoltaic device. J. Phys. D Appl. Phys. 2009, 42, 015102. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, D.H.; Kim, J.H.; Shim, T.H.; Park, J.G. Impact of donor, acceptor, and blocking layer thickness on power conversion efficiency for small-molecular organic solar cells. Synth. Met. 2009, 159, 1705–1709. [Google Scholar] [CrossRef]
- Peumans, P.; Forrest, S.R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 2001, 79, 126–128. [Google Scholar] [CrossRef]
- Hörmann, U.; Kraus, J.; Gruber, M.; Schuhmair, C.; Linderl, T.; Grob, S.; Kapfinger, S.; Klein, K.; Stutzman, M.; Krenner, H.J.; et al. Quantification of energy losses in organic solar cells from temperature-dependent device characteristics. Phys. Rev. B 2013, 88, 235307. [Google Scholar] [CrossRef] [Green Version]
- Peumans, P.; Yakimov, A.; Forrestb, S.R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 2003, 93, 3693–3723. [Google Scholar] [CrossRef]
- Song, Q.L.; Yang, H.; Wu, H.R.; Li, F.Y. Optical interference effect in layered organic materials studied by UV–Vis absorption spectroscopy. J. Lumin. 2006, 119, 142–147. [Google Scholar] [CrossRef]
- Ioannidis, A.; Dodelet, J.P. Hole mobilities in trivalent metal phthalocyanine thin films. Anomalous mobility temperature dependence in the low-temperature region 213-93 K for chloroaluminum, chlorogallium, and chloroindium phthalocyanine thin films. J. Phys. Chem. B 1997, 101, 901–907. [Google Scholar] [CrossRef]
- Ioannidis, A.; Dodelet, J.P. Hole mobilities in trivalent metal phthalocyanine thin films. Activated charge transport in time-of-flight measurements between 333 and 213 K for chloroaluminum phthalocyanine films with various amounts of disorder. J. Phys. Chem. B 1997, 101, 891–900. [Google Scholar] [CrossRef]
- Baumann, A.; Savenije, T.J.; Murthy, D.H.K.; Heeney, M.; Dyakonov, V.; Deibel, C. Influence of Phase Segregation on Recombination Dynamics in Organic Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2011, 21, 1687–1692. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, L.A.A.; Roman, L.; Inganäs, O. Quantum efficiency of exciton-to-charge generation in organic photovoltaic devices. J. Appl. Phys. 2001, 89, 5564–5569. [Google Scholar] [CrossRef]
- Mikhnenko, O.V.; Cordella, F.; Sieval, A.B.; Hummelen, J.C.; Blom, P.W.M.; Loi, M.A. Temperature Dependence of Exciton Diffusion in Conjugated Polymers. J. Phys. Chem. B 2008, 112, 11601–11604. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Cai, L.; Niu, L.; Guo, P.; Song, Q. Influence of Temperature on Exciton Dynamic Processes in CuPc/C60 Based Solar Cells. Micromachines 2021, 12, 1295. https://doi.org/10.3390/mi12111295
Chen L, Cai L, Niu L, Guo P, Song Q. Influence of Temperature on Exciton Dynamic Processes in CuPc/C60 Based Solar Cells. Micromachines. 2021; 12(11):1295. https://doi.org/10.3390/mi12111295
Chicago/Turabian StyleChen, Lijia, Lun Cai, Lianbin Niu, Pan Guo, and Qunliang Song. 2021. "Influence of Temperature on Exciton Dynamic Processes in CuPc/C60 Based Solar Cells" Micromachines 12, no. 11: 1295. https://doi.org/10.3390/mi12111295
APA StyleChen, L., Cai, L., Niu, L., Guo, P., & Song, Q. (2021). Influence of Temperature on Exciton Dynamic Processes in CuPc/C60 Based Solar Cells. Micromachines, 12(11), 1295. https://doi.org/10.3390/mi12111295