Investigation on Dynamic Characteristics of AlGaN/GaN Lateral Schottky Barrier Diode
Abstract
:1. Introduction
2. Device Characterization and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, G.-Y.; Liu, H.-H.; Chyi, J.-I. High-Performance AlGaN/GaN Schottky Diodes with an AlGaN/AlN Buffer Layer. IEEE Electron. Device Lett. 2011, 32, 1519–1521. [Google Scholar] [CrossRef]
- Park, Y.; Kim, J.J.; Chang, W.; Jang, H.G.; Na, J.; Lee, H.; Jun, C.H.; Cha, H.Y.; Mun, J.K.; Ko, S.C.; et al. Low onset voltage of GaN on Si Schottky barrier diode using various recess depths. Electron. Lett. 2014, 50, 1164–1165. [Google Scholar] [CrossRef]
- Lenci, S.; De Jaeger, B.; Carbonell, L.; Hu, J.; Mannaert, G.; Wellekens, D.; You, S.; Bakeroot, B.; Decoutere, S. Au-Free AlGaN/GaN Power Diode on 8-in Si Substrate With Gated Edge Termination. IEEE Electron. Device Lett. 2013, 34, 1035–1037. [Google Scholar] [CrossRef]
- Tsou, C.-W.; Wei, K.-P.; Lian, Y.-W.; Hsu, S.S.H. 2.07-kV AlGaN/GaN Schottky Barrier Diodes on Silicon With High Baliga’s Figure-of-Merit. IEEE Electron. Device Lett. 2016, 37, 70–73. [Google Scholar] [CrossRef]
- Chen, W.; Huang, W.; Wong, K.Y.; Chen, K.J. High-Performance AlGaN/GaN HEMT-Compatible Lateral Field-Effect Rectifiers. In Proceedings of the Device Research Conference, Santa Barbara, CA, USA, 23–25 June 2008; IEEE: Santa Barbara, CA, USA, 2008; pp. 287–288. [Google Scholar]
- Lee, J.-G.; Park, B.-R.; Cho, C.-H.; Seo, K.-S.; Cha, H.-Y. Low Turn-On Voltage AlGaN/GaN-on-Si Rectifier with Gated Ohmic Anode. IEEE Electron. Device Lett. 2013, 34, 214–216. [Google Scholar] [CrossRef]
- Zhou, Q.; Jin, Y.; Shi, Y.; Mou, J.; Bao, X.; Chen, B.; Zhang, B. High Reverse Blocking and Low Onset Voltage AlGaN/GaN-on-Si Lateral Power Diode With MIS-Gated Hybrid Anode. IEEE Electron. Device Lett. 2015, 36, 660–662. [Google Scholar] [CrossRef]
- Ma, J.; Matioli, E. High-Voltage and Low-Leakage AlGaN/GaN Tri-Anode Schottky Diodes with Integrated Tri-Gate Transistors. IEEE Electron. Device Lett. 2017, 38, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Matioli, E.; Lu, B.; Palacios, T. Ultralow Leakage Current AlGaN/GaN Schottky Diodes with 3-D Anode Structure. IEEE Trans. Electron. Devices 2013, 60, 3365–3370. [Google Scholar] [CrossRef]
- Shashikala, B.N.; Nagabhushana, B.S. High temperature performance of Wide Bandgap Semiconductors Devices for High Power Applications. Int. J. Eng. Sci. Technol. 2010, 2, 7586–7591. [Google Scholar]
- Yi, C.; Wang, R.; Huang, W.; Tang, W.C.W.; Lau, K.M.; Chen, K.J. Reliability of Enhancement-Mode AlGaN/GaN HEMTs Fabricated by Fluorine Plasma Treatment. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; IEEE: Washington, DC, USA, 2007; pp. 389–392. [Google Scholar]
- Kang, X.; Wang, X.; Huang, S.; Zhang, J.; Fan, J.; Yang, S.; Wang, Y.; Zheng, Y.; Wei, K.; Zhi, J.; et al. Recess-Free AlGaN/GaN lateral Schottky Barrier Controlled Schottky Rectifier with Low Turn-on Voltage and High Reverse Blocking. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; IEEE: Chicago, IL, USA, 2018; pp. 280–283. [Google Scholar]
- Kang, X.; Zheng, Y.; Wu, H.; Wei, K.; Zhang, G.; Liu, X. Thin barrier gated-edge termination AlGaN/GaN Schottky-barrier-diode with low reverse leakage and high turn-on uniformity. Semicond. Sci. Technol. 2021, 36, 094001. [Google Scholar] [CrossRef]
- Yang, S.; Han, S.; Sheng, K.; Chen, K.J. Dynamic On-Resistance in GaN Power Devices: Mechanisms, Characterizations, and Modeling. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 1425–1439. [Google Scholar] [CrossRef]
- Uren, M.J.; Karboyan, S.; Chatterjee, I.; Pooth, A.; Moens, P.; Banerjee, A.; Kuball, M. “Leaky Dielectric” Model for the Suppression of Dynamic RON in Carbon-Doped AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2017, 64, 2826–2834. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Umeda, H.; Ishida, H.; Ishida, M.; Ueda, T. Effects of hole traps on the temperature dependence of current collapse in a normally-OFF gate-injection transistor. Jpn. J. Appl. Phys. 2016, 55, 054101. [Google Scholar] [CrossRef]
- Li, L.; Kishi, A.; Liu, Q.; Itai, Y.; Fujihara, R.; Ohno, Y.; Ao, J.-P. GaN Schottky Barrier Diode with TiN Electrode for Microwave Rectification. IEEE J. Electron. Devices Soc. 2014, 2, 168–173. [Google Scholar] [CrossRef]
- Liu, Y.; Kijima, S.; Sugimata, E.; Masahara, M.; Endo, K.; Matsukawa, T.; Ishii, K.; Sakamoto, K.; Sekigawa, T.; Yamauchi, H.; et al. Investigation of the TiN Gate Electrode with Tunable Work Function and Its Application for FinFET Fabrication. IEEE Trans. Nanotechnol. 2006, 5, 723–730. [Google Scholar] [CrossRef]
- Sjoblom, G.; Westlinder, J.; Olsson, J.; Sjoblom, G.; Westlinder, J.; Olsson, J. Investigation of the Thermal Stability of Reactively Sputter-Deposited TiN MOS Gate Electrodes. IEEE Trans. Electron. Devices 2005, 52, 2349–2352. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, S.; Wang, X.; Li, Y.; Shi, J.; Zhang, Y.; Fan, J.; Yin, H.; Chen, X.; Wei, K.; et al. Interface charge engineering in down-scaled AlGaN (<6 nm)/GaN heterostructure for fabrication of GaN-based power HEMTs and MIS-HEMTs. Appl. Phys. Lett. 2020, 116, 103502. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Chowdhury, S.; Miao, M.-S.; Swenson, B.L.; Van de Walle, C.G.; Mishra, U.K. Distribution of donor states on etched surface of AlGaN/GaN heterostructures. J. Appl. Phys. 2010, 108, 063719. [Google Scholar] [CrossRef] [Green Version]
- Poblenz, C.; Waltereit, P.; Rajan, S.; Heikman, S.; Mishra, U.K.; Speck, J.S. Effect of carbon doping on buffer leakage in AlGaN/GaN high electron mobility transistors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2004, 22, 1145–1149. [Google Scholar] [CrossRef] [Green Version]
- Lyons, J.L.; Janotti, A.; Van de Walle, C.G. Carbon impurities and the yellow luminescence in GaN. Appl. Phys. Lett. 2010, 97, 152108. [Google Scholar] [CrossRef]
- Bisi, D.; Meneghini, M.; de Santi, C.; Chini, A.; Dammann, M.; Bruckner, P.; Mikulla, M.; Meneghesso, G.; Zanoni, E. Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements. IEEE Trans. Electron. Devices 2013, 60, 3166–3175. [Google Scholar] [CrossRef]
- Gomes, J.L.; Nunes, L.C.; Sobolev, N.A.; Pedro, J.C. Memristive Properties of GaN HEMTs Containing Deep-Level Traps. Phys. Status Solidi 2018, 256, 1800387. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Y.; Zhou, Y.; Gao, H.; Zhan, X.; Su, S.; Guo, X.; Sun, Q.; Zhang, Z.; Bi, W.; et al. Determination of carbon-related trap energy level in (Al)GaN buffers for high electron mobility transistors through a room-temperature approach. Appl. Phys. Lett. 2020, 117, 263501. [Google Scholar] [CrossRef]
- Koller, C.; Pobegen, G.; Ostermaier, C.; Pogany, D. Effect of Carbon Doping on Charging/Discharging Dynamics and Leakage Behavior of Carbon-Doped GaN. IEEE Trans. Electron. Devices 2018, 65, 5314–5321. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Yang, X.; Shi, L.; Zhang, P.; Cao, X.; Nie, J.; Wu, S.; Zhang, J.; Feng, Y.; et al. Migration of carbon from Ga sites to N sites in GaN: A combined PAS and hybrid DFT study. Jpn. J. Appl. Phys. 2019, 58, 090901. [Google Scholar] [CrossRef]
- Chevtchenko, S.A.; Cho, E.; Brunner, F.; Bahat-Treidel, E.; Würfl, J. Off-state breakdown and dispersion optimization in AlGaN/GaN heterojunction field-effect transistors utilizing carbon doped buffer. Appl. Phys. Lett. 2012, 100, 223502. [Google Scholar] [CrossRef]
- Würfl, J.; Bahat-Treidel, O.H.E.; Zhytnytska, R.; Kotara, P.; Brunner, F.; Krueger, O.; Weyers, M. Techniques towards GaN Power Transistors with Improved High Voltage Dynamic Switching Properties. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; IEEE: Washington, DC, USA, 2013; pp. 6.1.1–6.1.4. [Google Scholar]
Parameters | Value | Unit |
---|---|---|
Schottky metal work function | 4.65 | eV |
Polarization charge density in the access region | cm−2 | |
Polarization charge density in the electrode region | cm−2 | |
C-doping concentration in the buffer | cm−3 | |
ET of the acceptor trap in the C-doped buffer | Ev +0.81 | eV |
ET of the donor trap in the UID GaN channel | Ec −1.02 | eV |
Electron capture cross sections | cm2 | |
Hole capture cross sections | cm2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Kang, X.; Zheng, Y.; Wu, H.; Wei, K.; Liu, X.; Ye, T.; Jin, Z. Investigation on Dynamic Characteristics of AlGaN/GaN Lateral Schottky Barrier Diode. Micromachines 2021, 12, 1296. https://doi.org/10.3390/mi12111296
Zhang H, Kang X, Zheng Y, Wu H, Wei K, Liu X, Ye T, Jin Z. Investigation on Dynamic Characteristics of AlGaN/GaN Lateral Schottky Barrier Diode. Micromachines. 2021; 12(11):1296. https://doi.org/10.3390/mi12111296
Chicago/Turabian StyleZhang, Haitao, Xuanwu Kang, Yingkui Zheng, Hao Wu, Ke Wei, Xinyu Liu, Tianchun Ye, and Zhi Jin. 2021. "Investigation on Dynamic Characteristics of AlGaN/GaN Lateral Schottky Barrier Diode" Micromachines 12, no. 11: 1296. https://doi.org/10.3390/mi12111296
APA StyleZhang, H., Kang, X., Zheng, Y., Wu, H., Wei, K., Liu, X., Ye, T., & Jin, Z. (2021). Investigation on Dynamic Characteristics of AlGaN/GaN Lateral Schottky Barrier Diode. Micromachines, 12(11), 1296. https://doi.org/10.3390/mi12111296