Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrophobic/Hydrophilic Patterning Using VUV Light
2.2. Streaming-Current Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abgrall, P.; Nguyen, N.T. Nanofluidic devices and their applications. Anal. Chem. 2008, 80, 2326–2341. [Google Scholar] [CrossRef]
- Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095. [Google Scholar] [CrossRef] [Green Version]
- Napoli, M.; Eijkel, J.C.T.; Pennathur, S. Nanofluidic technology for biomolecule applications: A critical review. Lab Chip 2010, 10, 957–985. [Google Scholar] [CrossRef]
- Le, T.H.H.; Shimizu, H.; Morikawa, K. Advances in Label-Free Detections for Nanofluidic Analytical Devices. Micromachines 2020, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Ota, N.; Tanaka, Y. Nanofluidic Devices and Applications for Biological Analyses. Anal. Chem. 2021, 93, 332–349. [Google Scholar] [CrossRef]
- Janssen, K.G.H.; Hoang, T.H.; Floris, J.; de Vries, J.; Tas, N.R.; Eijkel, J.C.T.; Hankemeier, T. Solution titration by wall deprotonation during capillary filling of silicon oxide nanochannels. Anal. Chem. 2008, 80, 8095–8101. [Google Scholar] [CrossRef] [PubMed]
- Taghipoor, M.; Bertsch, A.; Renaud, P. An improved model for predicting electrical conductance in nanochannels. Phys. Chem. Chem. Phys. 2015, 17, 4160–4167. [Google Scholar] [CrossRef] [PubMed]
- Kazoe, Y.; Mawatari, K.; Sugii, Y.; Kitamori, T. Development of a Measurement Technique for Ion Distribution in an Extended Nanochannel by Super-Resolution-Laser-Induced Fluorescence. Anal. Chem. 2011, 83, 8152–8157. [Google Scholar] [CrossRef]
- Chang, C.; Kazoe, Y.; Morikawa, K.; Mawatari, K.; Yang, R.-J.; Kitamori, T. Numerical Simulation of Proton Distribution with Electric Double Layer in Extended Nanospaces. Anal. Chem. 2013, 85, 4468–4474. [Google Scholar] [CrossRef]
- Tas, N.R.; Haneveld, J.; Jansen, H.V.; Elwenspoek, M.; van den Berg, A. Capillary filling speed of water in nanochannels. Appl. Phys. Lett. 2004, 85, 3274–3276. [Google Scholar] [CrossRef]
- Han, A.; Mondin, G.; Hegelbach, N. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force. J. Colloid Interface Sci. 2006, 293, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.; Li, S.; Wang, C.; Shen, R.; Wen, W. Capillary flow control in nanochannels via hybrid surface. RSC Adv. 2016, 6, 2774–2777. [Google Scholar] [CrossRef]
- Nakao, T.; Kazoe, Y.; Morikawa, K.; Lin, L.; Mawatari, K.; Kitamori, T. Femtoliter Volumetric Pipette and Flask Utilizing Nanofluidics. Analyst 2020, 145, 2669–2675. [Google Scholar] [CrossRef]
- Mawatari, K.; Kubota, S.; Xu, Y.; Priest, C.; Ralston, J.; Kitamori, T. Femtoliter droplet handling in nanofluidic channels: A Laplace nanovalve. Anal. Chem. 2012, 84, 10812–10816. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, K.; Tsukahara, T. Fabrication of Hydrophobic Nanostructured Surfaces for Microfluidic Control. Anal. Sci. 2016, 32, 79–83. [Google Scholar] [CrossRef]
- Duan, C.; Alibakhshi, M.A.; Kim, D.K.; Brown, C.M.; Craik, C.S.; Majumdar, A. Label-Free Electrical Detection of Enzymatic Reactions in Nanochannels. ACS Nano 2016, 10, 7476–7484. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Morikawa, K.; Imanaka, H.; Imamura, K.; Kitamori, T. Picoliter enzyme reactor on a nanofluidic device exceeding the bulk reaction rate. Analyst 2020, 145, 5801–5807. [Google Scholar] [CrossRef] [PubMed]
- Shirai, K.; Mawatari, K.; Kitamori, T. Extended nanofluidic immunochemical reaction with femtoliter sample volumes. Small 2014, 10, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Purr, F.; Lowe, R.D.; Stehr, M.; Singh, M.; Burg, T.P.; Dietzel, A. Biosensing based on optimized asymmetric optofluidic nanochannel gratings. Micro Nano Eng. 2020, 8, 100056. [Google Scholar] [CrossRef]
- Rassaei, L.; Mathwig, K.; Kang, S.; Heering, H.A.; Lemay, S.G. Integrated biodetection in a nanofluidic device. ACS Nano 2014, 8, 8278–8284. [Google Scholar] [CrossRef]
- Morikawa, K.; Ohta, R.; Mawatari, K.; Kitamori, T. Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis. Micromachines 2021, 12, 917. [Google Scholar] [CrossRef]
- Dong, B.; Lu, N.; Zelsmann, M.; Kehagias, N.; Fuchs, H.; Sotomayor Torres, C.M.; Chi, L. Fabrication of high-density, large-area conducting-polymer nanostructures. Adv. Funct. Mater. 2006, 16, 1937–1942. [Google Scholar] [CrossRef]
- Huang, C.; Dong, B.; Lu, N.; Yang, B.; Gao, L.; Tian, L.; Qi, D.; Wu, Q.; Chi, L. A strategy for patterning conducting polymers using nanoimprint lithography and isotropic plasma etching. Small 2009, 5, 583–586. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Wang, D.; He, F.; Ni, C.; Chi, L. Fabricating sub-100nm conducting polymer nanowires by edge nanoimprint lithography. J. Colloid Interface Sci. 2015, 458, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Krutschke, M.; Zhang, X.; Chi, L.; Fuchs, H. Fabrication of polypyrrole wires between microelectrodes. Small 2005, 1, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Chow, B.Y.; Jacobson, J.M. Nanoscale patterning on insulating substrates by critical energy electron beam lithography. Nano Lett. 2006, 6, 2021–2025. [Google Scholar] [CrossRef]
- Yin, Z.; Cheng, E.; Zou, H. A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography. Lab Chip 2014, 14, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodian, M.; Hajihoseini, H.; Mohajerzadeh, S.; Fathipour, M. Nano patterning and fabrication of single polypyrrole nanowires by electron beam lithography. Synth. Met. 2019, 249, 14–24. [Google Scholar] [CrossRef]
- Son, S.Y.; Lee, S.; Lee, H.; Kim, S.J. Engineered nanofluidic preconcentration devices by ion concentration polarization. Biochip J. 2016, 10, 251–261. [Google Scholar] [CrossRef]
- Han, S.I.; Hwang, K.S.; Kwak, R.; Lee, J.H. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization. Lab Chip 2016, 16, 2219–2227. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.; Kim, H.; Kim, H.Y.; Lee, H.; Kim, S.J. A concentration-independent micro/nanofluidic active diode using an asymmetric ion concentration polarization layer. Nanoscale 2017, 9, 11871–11880. [Google Scholar] [CrossRef]
- Ohta, R.; Mawatari, K.; Takeuchi, T.; Morikawa, K.; Kitamori, T. Detachable glass micro/nanofluidic device. Biomicrofluidics 2019, 13, 024104. [Google Scholar] [CrossRef]
- Priest, C. Surface patterning of bonded microfluidic channels. Biomicrofluidics 2010, 4, 032206. [Google Scholar] [CrossRef] [Green Version]
- Sugimura, H.; Hayashi, K.; Amano, Y.; Takai, O.; Hozumi, A. Friction force microscopy study on photodegradation of organosilane self-assembled monolayers irradiated with a vacuum ultraviolet light at 172 nm. J. Vac. Sci. Technol. A Vac. Surf. Film. 2001, 19, 1261–1265. [Google Scholar] [CrossRef]
- Abate, A.R.; Thiele, J.; Weinhart, M.; Weitz, D.A. Patterning microfluidic device wettability using flow confinement. Lab Chip 2010, 10, 1774–1776. [Google Scholar] [CrossRef] [PubMed]
- Nakao, T.; Kazoe, Y.; Mori, E.; Morikawa, K.; Fukasawa, T.; Yoshizaki, A.; Kitamori, T. Cytokine analysis on a countable number of molecules from living single cells on nanofluidic devices. Analyst 2019, 144, 7200–7208. [Google Scholar] [CrossRef]
- Romanowsky, M.B.; Heymann, M.; Abate, A.R.; Krummel, A.T.; Fraden, S.; Weitz, D.A. Functional patterning of PDMS microfluidic devices using integrated chemo-masks. Lab Chip 2010, 10, 1521–1524. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Nguyen, N.T.; Chua, Y.C.; Kang, T.G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 2010, 4, 032204. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.C.; Sukovich, D.J.; Abate, A.R. Patterning microfluidic device wettability with spatially-controlled plasma oxidation. Lab Chip 2015, 15, 3163–3169. [Google Scholar] [CrossRef] [Green Version]
- Herzer, N.; Hoeppener, S.; Schubert, U.S. Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chem. Commun. 2010, 46, 5634–5652. [Google Scholar] [CrossRef]
- Hu, S.; Ren, X.; Bachman, M.; Sims, C.E.; Li, G.P.; Allbritton, N.L. Surface-Directed, Graft Polymerization within Microfluidic Channels. Anal. Chem. 2004, 76, 1865–1870. [Google Scholar] [CrossRef]
- Abate, A.R.; Krummel, A.T.; Lee, D.; Marquez, M.; Holtze, C.; Weitz, D.A. Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. Lab Chip 2008, 8, 2157–2160. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.H.; Kozlov, B.; Willaime, H.; Tran, Y.; Rezgui, F.; Tabeling, P. Wettability patterning in microfluidic systems by poly(acrylic acid) graft polymerization. Anal. Chem. 2010, 82, 8848–8855. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Li, K.; Shi, W.; Ding, C.; Lu, C. In situ visualization of hydrophilic spatial heterogeneity inside microfluidic chips by fluorescence microscopy. Lab Chip 2019, 19, 934–940. [Google Scholar] [CrossRef]
- van der Heyden, F.; Stein, D.; Dekker, C. Streaming Currents in a Single Nanofluidic Channel. Phys. Rev. Lett. 2005, 95, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Pu, Q.; Elazazy, M.S.; Alvarez, J.C. Label-free detection of heparin, streptavidin, and other probes by pulsed streaming potentials in plastic microfluidic channels. Anal. Chem. 2008, 80, 6532–6536. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, K.; Mawatari, K.; Kato, M.; Tsukahara, T.; Kitamori, T. Streaming potential/current measurement system for investigation of liquids confined in extended-nanospace. Lab Chip 2010, 10, 871–875. [Google Scholar] [CrossRef]
- Morikawa, K.; Mawatari, K.; Kazoe, Y.; Tsukahara, T.; Kitamori, T. Shift of isoelectric point in extended nanospace investigated by streaming current measurement. Appl. Phys. Lett. 2011, 99, 123115. [Google Scholar] [CrossRef]
- Ye, T.; McArthur, E.A.; Borguet, E. Mechanism of UV photoreactivity of alkylsiloxane self-assembled monolayers. J. Phys. Chem. B 2005, 109, 9927–9938. [Google Scholar] [CrossRef]
- Morikawa, K.; Matsushita, K.; Tsukahara, T. Rapid Plasma Etching for Fabricating Fused Silica Microchannels. Anal. Sci. 2017, 33, 1453–1456. [Google Scholar] [CrossRef] [Green Version]
- Morikawa, K.; Kazoe, Y.; Takagi, Y.; Tsuyama, Y.; Pihosh, Y.; Tsukahara, T.; Kitamori, T. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device. Micromachines 2020, 11, 995. [Google Scholar] [CrossRef] [PubMed]
- Afonso, M.D.; Hagmeyer, G.; Gimbel, R. Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Sep. Purif. Technol. 2001, 22–23, 529–541. [Google Scholar] [CrossRef]
- Morao, A.I.C.; Alves, A.M.B.; Afonso, M.D. Concentration of clavulanic acid broths: Influence of the membrane surface charge density on NF operation. J. Memb. Sci. 2006, 281, 417–428. [Google Scholar] [CrossRef]
- Morikawa, K.; Kazoe, Y.; Mawatari, K.; Tsukahara, T.; Kitamori, T. Dielectric Constant of Liquids Confined in the Extended Nanospace Measured by a Streaming Potential Method. Anal. Chem. 2015, 87, 1475–1479. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morikawa, K.; Kazumi, H.; Tsuyama, Y.; Ohta, R.; Kitamori, T. Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current. Micromachines 2021, 12, 1367. https://doi.org/10.3390/mi12111367
Morikawa K, Kazumi H, Tsuyama Y, Ohta R, Kitamori T. Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current. Micromachines. 2021; 12(11):1367. https://doi.org/10.3390/mi12111367
Chicago/Turabian StyleMorikawa, Kyojiro, Haruki Kazumi, Yoshiyuki Tsuyama, Ryoichi Ohta, and Takehiko Kitamori. 2021. "Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current" Micromachines 12, no. 11: 1367. https://doi.org/10.3390/mi12111367
APA StyleMorikawa, K., Kazumi, H., Tsuyama, Y., Ohta, R., & Kitamori, T. (2021). Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current. Micromachines, 12(11), 1367. https://doi.org/10.3390/mi12111367