Research on Task-Service Network Node Matching Method Based on Multi-Objective Optimization Model in Dynamic Hyper-Network Environment
Abstract
:1. Introduction
2. Related Work
3. The Supply-Demand Matching Framework for C3DPS Based on Task-Service Network
3.1. The Characteristics of Supply-Demand Matching of C3DPS
- A wide-area distribution of C3DPS
- 2.
- The dynamics of massive information
- 3.
- The accuracy of Supply-demand matching of C3DPS
- 4.
- The accuracy of Multi-level matching integration
3.2. The Framework of Task-Service Network Node Matching Model Based on Multi-Objective Optimization
- The task-service network is a topological structure of a large-scale virtual network that is composed of task service nodes and various related edge task nodes; the ontology library refers to a C3DP order task domain ontology, which mainly provides semantic support for the needs/services of a DD workshop and the maker’s transactions;
- The ontology library refers to a domain ontology of the C3DP order task, which mainly provides semantic support for the related description and the registration release of the C3DPS demand and the service provider;
- The algorithm knowledge database refers to a database that provides different types of Supply–demand matching algorithm knowledge, such as the topology matching algorithm, semantic similarity algorithm and geometric matching algorithm;
- The information parser is responsible for classifying and extracting the demand information in the C3DP order task network and service node information, and parsing and obtaining the basic information, I/O information (including processing accuracy, mechanical and physical properties, surface roughness, etc.) and QoS information (including time, cost, quality, fault tolerance, reliability, and comprehensive satisfaction). Here, it is provided by the requirements analysis documents and the analysis documents.
- The resource matcher is a function that matches C3DPS via all kinds of matching algorithms in the algorithm knowledge base [28]. This matching algorithms includes task service network node matching, based on the Multi-Objective optimization model and C3DPS hierarchical matching based on the task service network.
4. Mathematical Model of C3DPS Order Task Execution Evaluation Based on the AHP-TOPSIS Evaluation Model
4.1. The Task-Service Network Node Matching Model Based on a Multi-Objective Optimization
4.2. The Calculation of Initial Node Similarity
4.3. Mathematical Model of Node Matching and Evolutionary Solutions
- (1)
- Selecting design variables
- (2)
- The establishment of objective function
- (1)
- The maximization of node proximity
- (2)
- The minimization of node criticality
- (3)
- The constraint condition
- (4)
- The mathematical model of Multi-Objective optimization
- (5)
- The mathematical description of a genetic algorithm
- (1)
- The mode of Individual coding
- (2)
- The selection and the genetic operator
- (a)
- The selection operator
- (b)
- The Crossover operation
- (3)
- The Mutation operation
- (4)
- The steps of Evolutionary algorithm
5. Case Study
5.1. The Portrait 3D Printing Product in the Field of Cultural Creativity as an Example
5.2. The Case Study of Node Matching in the Task-Service Network
5.3. Results and Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOM | Service-oriented manufacturing |
AMSs | Advanced manufacturing systems |
CMfg | Cloud manufacturing |
C3DPSs | Cloud 3D printing services |
C3DP | Cloud 3D printing |
C3DPS | Cloud 3D printing service |
GA | genetic algorithm |
MOP | Multiple-Objective Optimization Problem |
References
- Yong, B.S.; Yun, Y.H.; Joo, K.N. 3D multi-layered film thickness profile measurements based on photometric type imaging ellipsometry. Int. J. Precis. Eng. Manuf. 2016, 17, 989–993. [Google Scholar]
- Lee, J.S.; Seol, Y.J.; Sung, M.; Moon, W.; Kim, S.W.; Oh, J.H.; Cho, D.W. Development and analysis of three-dimensional, 3D printed biomimetic ceramic. Int. J. Precis. Eng. Manuf. 2016, 17, 1711–1719. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Laili, Y.; Zhao, C.; Xiao, Y. Multi-task scheduling of distributed 3D printing services in cloud manufacturing. Int. J. Adv. Manuf. Technol. 2018, 96, 3003–3017. [Google Scholar] [CrossRef]
- Yadekar, Y.; Shehab, E.; Mehnen, J. A framework to manage uncertainties in cloud manufacturing environment. Mov. Integr. Prod. Dev. Serv. Clouds Glob. Econ. 2014, 1, 297–306. [Google Scholar]
- Ouelhadj, D.; Petrovic, S.A. Survey of Dynamic Scheduling in Manufacturing Systems. J. Sched. 2008, 12, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.N.; Leung, C.W.; Mak, K.L.; Fung, R.Y.K. Dynamic Shopfloor Scheduling in Multi-Agent Manufacturing Systems. Expert Syst. Appl. 2006, 31, 486–494. [Google Scholar] [CrossRef]
- Xiang, W.; Lee, H.P. Ant Colony Intelligence in Multi-Agent Dynamic Manufacturing Scheduling. Eng. Appl. Artif. Intell. 2008, 21, 73–85. [Google Scholar] [CrossRef]
- Nie, L.; Gao, L.; Li, P.; Shao, X. Reactive Scheduling in a Job Shop Where Jobs Arrive over Time. Comput. Ind. Eng. 2013, 66, 389–405. [Google Scholar] [CrossRef]
- Cowling, P.; Johansson, M. Using Real Time Information for Effective Dynamic Scheduling. Eur. J. Oper. Res. 2002, 139, 230–244. [Google Scholar] [CrossRef]
- Hwang, H.C.; Choi, B.K. Workflow-Based Dynamic Scheduling of Job Shop Operations. Int. J. Comput. Integr. Manuf. 2007, 20, 557–566. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Choi, B. 3D printed fluidic valves for remote operation via external magnetic field. Int. J. Precis. Eng. Manuf. 2016, 17, 937–942. [Google Scholar] [CrossRef]
- Guerrero, G.; Langa, J.A.; Suárez, A. Architecture of attractor determines dynamics on mutualistic complex networks. Nonlinear Anal. Real World Appl. 2017, 34, 17–40. [Google Scholar] [CrossRef]
- Cheng, Y.; Tao, F.; Zhang, L.; Zhao, D. Dynamic Supply-Demand Matching for Manufacturing Resource Services in Service-Oriented Manufacturing Systems: A Hypernetwork-Based Solution Framework. In Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference, Charlotte, NC, USA, 8–12 June 2015; p. V002T04A017-1. [Google Scholar]
- Tao, F.; Cheng, J.; Cheng, Y.; Gu, S.; Zheng, T.; Yang, H. SDMSim: A manufacturing service supply-demand matching simulator under cloud environment. Robot. Comput. Integr. Manuf. 2017, 45, 34–46. [Google Scholar] [CrossRef]
- Cheng, Y.; Tao, F.; Xu, L.; Zhao, D. Advanced manufacturing systems: Supply-demand matching of manufacturing resource based on complex networks and Internet of Things. Enterp. Inf. Syst. 2016, 2016, 1–18. [Google Scholar] [CrossRef]
- Cheng, Y.; Tao, F.; Zhao, D.; Zhang, L. Modeling of manufacturing service supply-demand matching hypernetwork in service-oriented manufacturing systems. Robot. Comput. Integr. Manuf. 2016, 45, 59–72. [Google Scholar] [CrossRef]
- Zhang, C.; Zhuang, J.; Han, H.; Yuan, B.; Liu, J.; Zhuang, S.; Li, R. Evaluation of cloud 3d printing order task execution based on the ahp-topsis optimal set algorithm and the baldwin effect. Micromachines 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Zhao, F.; Zhang, C.; Yin, X.; Shu, Y. 3D Rubik’s Cube—Online 3D modeling system based on Web GL, Technology, Networking. In Proceedings of the Electronic & Automation Control Conference, IEEE, Chengdu, China, 15–17 December 2017. [Google Scholar] [CrossRef]
- Kim, J.H.; Song, H.Y. Hypergraph-based Binary Locally Repairable Codes with Availability. IEEE Commun. Lett. 2017, 99, 1. [Google Scholar] [CrossRef]
- Zhang, C.; Sheng, B.; Yin, X.; Zhao, F.; Shu, Y. Research and development of off-line services for the 3D automatic printing machine based on cloud manufacturing. J. Ambient. Intell. Humaniz. Comput. 2017, 1, 1–20. [Google Scholar] [CrossRef]
- Minguella, J.; Villegas, M.; Poll, B.; Tena, G.; Calero, J.A.; Ginebra, M.P.; Korkusuz, F. Automatic Casting of Advanced Technical Ceramic Parts via Open Source High Resolution 3D Printing Machines. Key Eng. Mater. 2015, 631, 269–274. [Google Scholar] [CrossRef]
- Im, S.; Lee, Y.; Kim, J.; Chang, M. A solution for camera occlusion using a repaired pattern from a projector. Int. J. Precis. Eng. Manuf. 2016, 17, 1443–1450. [Google Scholar] [CrossRef]
- Yasser, Y. A new knowledge-based link recommendation approach using a non-parametric multilayer model of dynamic complex networks. Knowl.-Based Syst. 2018, 143, 81–92. [Google Scholar]
- Wang, X.; Sheng, B.; Zhang, C.; Xiao, Z.; Wang, H.; Zhao, F. An effective application of 3D cloud printing service quality evaluation in BM-MOPSO. Concurr. Comput. Pract. Exp. 2018. [Google Scholar] [CrossRef]
- Yasser, Y.; Farshad, S. A statistical infinite feature cascade-based approach to anomaly detection for dynamic social networks. Knowl.-Based Syst. 2017, 100, 52–64. [Google Scholar]
- Tao, F.; Zhang, L.; Lu, K.; Zhao, D. Study on manufacturing grid resource service optimal-selection and composition framework. Enterp. Inf. Syst. 2012, 6, 237–264. [Google Scholar] [CrossRef]
- Tao, F.; Li, C.; Liao, T.W.; Lai, Y. BGM-BLA: A new algorithm for dynamic migration of virtual machines in cloud computing. IEEE Trans. Serv. Comput. 2016, 99, 910–925. [Google Scholar] [CrossRef]
- Zhang, C.L.; Liu, J.J.; Xu, B.; Yuan, B.; Zhuang, S.L.; Zhao, F.Y. Architecture of cloud 3D printing task modeling for nodes dynamic scheduling and coupling based on complex networks. IEEE Access 2020, 8, 135208–135222. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Chen, L. An efficient algorithm for link prediction in temporal uncertain social networks. Inf. Sci. 2016, 5, 120–136. [Google Scholar] [CrossRef]
- Chen, Z.; Hendrix, W.; Samatova, N.F. Community-based anomaly detection in evolutionary networks. J. Intell. Inf. Syst. 2012, 5, 159–185. [Google Scholar] [CrossRef]
- Fanaee-T, H.; Gamab, J. Tensor-based anomaly detection: An interdisciplinary survey. J. Knowl.-Based Syst. 2016, 5, 130–147. [Google Scholar] [CrossRef] [Green Version]
- Heard, N.A.; Weston, D.J.; Platanioti, K.; Hand, D.J. Bayesian anomaly detection methods for social networks. Ann. Appl. Stat. Inst. Math. Stat. 2016, 2, 645–662. [Google Scholar] [CrossRef] [Green Version]
- Anwar, H.; Din, I.; Kang, P. Projector calibration for 3D scanning using virtual target images. Int. J. Precis. Eng. Manuf. 2012, 13, 125–131. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zhao, F.Y.; Wang, Z.Q. Modelling of Cloud 3D printing service hyper-network in service-oriented manufacturing systems. IEEE Access 2019, 8, 16225–16235. [Google Scholar] [CrossRef]
- Yin, C.; Xia, Q.; Li, Z.W. Semantic matching technique of cloud manufacturing service based on OWL-S. Comput. Integr. Manuf. Syst. 2012, 7, 1494–1502. [Google Scholar]
- Fatehi, M.; Asadi, H.H. Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran. Ore Geol. Rev. 2017, 81, 245–255. [Google Scholar] [CrossRef]
- Usuki, S.; Kanaka, H.; Miura, K.T. Generation and control of 3D standing wave illumination for wide-field high-resolution 3D microscopic measurement. Int. J. Precis. Eng. Manuf. 2013, 14, 55–60. [Google Scholar] [CrossRef]
- Cheng, K.; Wu, L.; Yu, X.; Yin, C.; Kang, R. Improving hierarchical task network planning performance by the use of domain-independent heuristic search. Knowl.-Based Syst. 2018, 142, 131–143. [Google Scholar] [CrossRef]
- Janowicz, K.; Wilkes, M. SIM-DLA: A Novel Semantic Similarity Measure for Description Logics Reducing Inter-concept to Inter-instance Similarity. In Proceedings of the European Semantic Web Conference on the Semantic Web: Research and Applications, Crete, Greece, 31 May–4 June 2009; pp. 353–367. [Google Scholar]
- Zhou, J.; Yao, X.; Lin, Y.; Chan, F.T.; Li, Y. An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing. Inf. Sci. 2018, 456, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Li, S.; Qie, X.; Du, Y.; Jiang, R.; Lu, G.; Mou, X.; Liu, G. Analysis and Investigation on Lightning Electromagnetic Coupling Effects of a Dipole Antenna for a Wireless Base Station. IEEE Trans. Electromagn. Compat. 2018, 99, 1–8. [Google Scholar] [CrossRef]
- Azadbakht, F.T.; Boroun, G.R. Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions. Int. J. Theor. Phys. 2018, 57, 1–11. [Google Scholar] [CrossRef]
- Zhang, C.L.; Sheng, B.Y.; Zhao, F.Y.; Yin, X.Y.; Cao, J.J. Modeling and analysis of 3D Printing WS-BPEL business processes based on servicenet. In Proceedings of the 4th International Conference on Information Technology and Applications, Guangzhou, China, 26–28 May 2017; pp. 663–667. [Google Scholar]
- Cheng, Y.; Zhao, D.; Tao, F.; Zhang, L.; Liu, Y. Complex networks based manufacturing service and task management in cloud environment. IEEE Ind. Electron. Appl. 2015, 2015, 242–247. [Google Scholar]
- Raman, M.G.; Somu, N.; Kirthivasan, K.; Sriram, V.S. A Hypergraph and Arithmetic Residue-based Probabilistic Neural Network for classification in Intrusion Detection Systems. Neural Netw. 2017, 92, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Fahmi, A.; Almahdi, F.A.A.; Yaqoob, N. Extension of TOPSIS method for group decision-making under triangular linguistic neutrosophic cubic sets. Soft Comput. 2021, 25, 3359–3376. [Google Scholar] [CrossRef]
- Fatima, A.; Cyril, G.; Vincent, V.; Stéphane, J.; Olivier, P. Towards normalization selection of Raman data in the context of protein glycation: Application of validity indices to PCA processed spectra. Analyst 2020, 145, 1–12. [Google Scholar] [CrossRef] [PubMed]
Y | 50 | 41 | 50 | 44 | 35 | 31 | 34 | 53 | 48 | |||||||
T | 15 | 17 | 15 | 10 | 13 | 9 | 6 | 11 | 6 | |||||||
W | 7 | 4 | 4 | 6 | 7 | 2 | 4 | 6 | 7 | |||||||
Y | 43 | 36 | 42 | 47 | 53 | 61 | 64 | 67 | 72 | |||||||
T | 4 | 7 | 12 | 13 | 11 | 7 | 7 | 11 | 28 | |||||||
W | 9 | 13 | 10 | 6 | 3 | 6 | 4 | 1 | 5 | |||||||
Y | 74 | 33 | 25 | 29 | 27 | 25 | 30 | 46 | ||||||||
T | 7 | 6 | 13 | 17 | 19 | 23 | 20 | 15 | ||||||||
W | 3 | 8 | 9 | 12 | 6 | 8 | 5 | 4 |
Location | 1 | 2 | 3 | 4 |
Address | Wuhan | Changsha | Chongqing | Zhengzhou |
Location | 5 | 6 | 7 | 8 |
Address | Guangzhou | Shanghai | Beijing | Nanchang |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 0/0 | 32/3 | 31/3 | 34/4 | 35/3 | 36/4 | 41/3 | 31/2 |
2 | 32/3 | 0/0 | 42/2 | 35/2 | 36/3 | 28/3 | 36/7 | 42/5 |
3 | 40/3 | 42/3 | 0/0 | 31/2 | 39/4 | 41/7 | 39/5 | 46/6 |
Service Name | Basic Information | I/O Information | QoS Information |
---|---|---|---|
Resource Name: Color 3D printer Processing material: Gypsum Service content: 3D printing | Input: 3D model of Brahma gypsum relief decoration, quantity; Output: print finished product Service scope: Wuhan Jiang’an District; Pass rate: 100% | Time: 11D Price: 2387.00 Reliability: 0.94 Environmental protection value: 93 Credibility: 4.63 | |
Resource Name: Color 3D printer Processing material: Gypsum Service content: 3D printing | Input: 3D model of Brahma gypsum relief decoration, quantity; Output: print finished product Service scope: Wuhan Hongshan District; Pass rate: 100% | Time: 8D Price: 1986.50 Reliability: 0.92 Environmental protection value: 92 Credibility: 4.82 | |
Resource Name: Color 3D printer Processing material: Gypsum Service content: 3D printing | Input: 3D model of Brahma gypsum relief decoration, quantity; Output: print finished product Service scope: Wuhan Hongshan District; Pass rate: 100% | Time: 14D Price: 1875.30 Reliability: 0.88 Environmental protection value: 93 Credibility: 4.78 |
Types | The Traditional Method | Four Kinds of Similarity Algorithms Based on a Complex Network | |||||||
---|---|---|---|---|---|---|---|---|---|
Exact Matching | Contains Matching | Implicit Matching | Mis-Matching | NS | Grid | Yeast | PB | ||
Indexes | HPI | 3.561 | 2.654 | 1.201 | 0.051 | 0.967 | 9.534 | 2.425 | 0.870 |
CN | 2.995 | 1.325 | 1.235 | 0.062 | 0.267 | 2.481 | 0.701 | 0.375 | |
PA | 3.056 | 1.254 | 1.204 | 0.031 | 0.735 | 7.992 | 1.684 | 0.523 | |
AA | 1.854 | 1.025 | 1.054 | 0.048 | 0.450 | 5.161 | 1.186 | 0.469 | |
RA | 2.056 | 2.985 | 1.069 | 0.028 | 0.365 | 3.114 | 0.891 | 0.443 | |
CI | 1.952 | 1.985 | 1.211 | 0.034 | 0.384 | 3.150 | 0.931 | 0.590 |
Types | The Traditional Method | Four Kinds of Similarity Algorithm | |||||||
---|---|---|---|---|---|---|---|---|---|
Exact | Contains | Implicit | Mis | NS | Grid | Yeast | PB | ||
Indexes | HPI | 5.6540 | 4.5681 | 3.9854 | 7.4501 | 0.5019 | 0.1542 | 0.1812 | 0.4106 |
CN | 4.8956 | 4.2658 | 3.6857 | 7.2822 | 1.8441 | 0.0519 | 0.5931 | 1.1370 | |
PA | 5.6985 | 5.3654 | 4.9887 | 13.281 | 0.3361 | 0.0142 | 0.1586 | 0.8125 | |
AA | 2.6542 | 2.3658 | 1.5874 | 8.5460 | 1.0824 | 0.0245 | 0.3540 | 0.9125 | |
RA | 3.6521 | 3.0554 | 2.3652 | 16.642 | 1.3254 | 0.4089 | 0.4752 | 0.9524 | |
CI | 6.8755 | 4.5697 | 3.6858 | 13.542 | 1.2843 | 0.0451 | 0.4525 | 0.7158 |
Types | The Traditional Method | Four Kinds of Similarity Algorithm | |||||||
---|---|---|---|---|---|---|---|---|---|
Exact | Contains | Implicit | Mis | NS | Grid | Yeast | PB | ||
Indexes | HPI | 96.00 | 48.95 | 18.65 | 88.00 | 99.23 | 62.71 | 91.94 | 85.50 |
CN | 82.56 | 42.36 | 23.51 | 95.15 | 99.24 | 62.87 | 92.02 | 92.02 | |
PA | 85.00 | 36.87 | 20.36 | 91.19 | 74.08 | 58.01 | 58.01 | 86.10 | |
AA | 78.58 | 55.96 | 11.56 | 96.34 | 99.26 | 62.87 | 62.87 | 92.01 | |
RA | 70.61 | 61.50 | 23.68 | 96.70 | 99.20 | 62.74 | 62.74 | 99.31 | |
CI | 80.00 | 50.00 | 20.00 | 97.00 | 99.31 | 62.97 | 62.74 | 62.97 |
Types | The Traditional Method | Four Kinds of Similarity Algorithm | |||||||
---|---|---|---|---|---|---|---|---|---|
Exact | Contains | Implicit | Mis | NS | Grid | Yeast | PB | ||
Indexes | HPI | 1.000 | 0.700 | 0.400 | 0.000 | 0.923 | 0.838 | 0.919 | 0.855 |
CN | 1.000 | 0.700 | 0.400 | 0.000 | 0.924 | 0.728 | 0.920 | 0.927 | |
PA | 1.000 | 0.700 | 0.400 | 0.000 | 0.756 | 0.881 | 0.880 | 0.861 | |
AA | 1.000 | 0.700 | 0.400 | 0.000 | 0.993 | 0.887 | 0.873 | 0.920 | |
RA | 0.800 | 0.500 | 0.200 | 0.000 | 0.992 | 0.774 | 0.874 | 0.993 | |
CI | 0.800 | 0.500 | 0.200 | 0.000 | 0.993 | 0.897 | 0.861 | 0.630 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.-l.; Liu, J.-j.; Han, H.; Wang, X.-j.; Yuan, B.; Zhuang, S.-l.; Yang, K. Research on Task-Service Network Node Matching Method Based on Multi-Objective Optimization Model in Dynamic Hyper-Network Environment. Micromachines 2021, 12, 1427. https://doi.org/10.3390/mi12111427
Zhang C-l, Liu J-j, Han H, Wang X-j, Yuan B, Zhuang S-l, Yang K. Research on Task-Service Network Node Matching Method Based on Multi-Objective Optimization Model in Dynamic Hyper-Network Environment. Micromachines. 2021; 12(11):1427. https://doi.org/10.3390/mi12111427
Chicago/Turabian StyleZhang, Cheng-lei, Jia-jia Liu, Hu Han, Xiao-jie Wang, Bo Yuan, Shen-le Zhuang, and Kang Yang. 2021. "Research on Task-Service Network Node Matching Method Based on Multi-Objective Optimization Model in Dynamic Hyper-Network Environment" Micromachines 12, no. 11: 1427. https://doi.org/10.3390/mi12111427
APA StyleZhang, C. -l., Liu, J. -j., Han, H., Wang, X. -j., Yuan, B., Zhuang, S. -l., & Yang, K. (2021). Research on Task-Service Network Node Matching Method Based on Multi-Objective Optimization Model in Dynamic Hyper-Network Environment. Micromachines, 12(11), 1427. https://doi.org/10.3390/mi12111427