Evaluation of Cloud 3D Printing Order Task Execution Based on the AHP-TOPSIS Optimal Set Algorithm and the Baldwin Effect
Abstract
:1. Introduction
2. Framework for Cloud Service Evaluation Based on a Hybrid Multi-Objective BM-MOPSO Evaluation Model
3. Intelligent Optimization Algorithm for the Pareto Optimal Set and AHP
3.1. Intelligent Optimization Algorithm for Pareto Optima
3.2. Analytic Hierarchy Process
4. Mathematical Model of C3DPS Order Task Execution Evaluation Based on the AHP-TOPSIS Evaluation Model
4.1. Establish an Initial Evaluation Matrix
4.2. Establish a Weighted Standardized Decision Matrix
5. The Solution of the C3DPS Quality Evaluation Model
5.1. Hybrid Multi-Objective Particle Swarm Optimization (PSO) Algorithm Based on the Baldwin Effect (BM-MOPSO)
5.2. The Basic Process of the Multi-Objective Particle Swarm Optimization Algorithm Based on the Baldwin Effect
6. Example Simulation
6.1. C3DPSs Modeling
6.2. Simulation Environment
- Windows 7 operating system;
- Intel (R) Core (tm) i5-4210H 2.90 GHZ CPU;
- 8G memory.
6.3. Analysis of Hybrid Multi-Objective BM-MOPSO
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouelhadj, D.; Petrovic, S. A survey of dynamic scheduling in manufacturing systems. J. Sched. 2008, 12, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.; Leung, C.; Mak, K.; Fung, R. Dynamic shopfloor scheduling in multi-agent manufacturing systems. Expert Syst. Appl. 2006, 31, 486–494. [Google Scholar] [CrossRef]
- Xiang, W.; Lee, H. Ant colony intelligence in multi-agent dynamic manufacturing scheduling. Eng. Appl. Artif. Intell. 2008, 21, 73–85. [Google Scholar] [CrossRef]
- Rahman, I.U.; Zakarya, M.; Raza, M.; Khan, R. An n-state switching PSO algorithm for scalable optimization. Soft Comput. 2020, 11, 11297–11314. [Google Scholar] [CrossRef]
- Nie, L.; Gao, L.; Li, P.; Shao, X. Reactive scheduling in a job shop where jobs arrive over time. Comput. Ind. Eng. 2013, 66, 389–405. [Google Scholar] [CrossRef]
- Zeng, N.; Wang, Z.; Li, Y.; Du, M.; Liu, X. A Hybrid EKF and Switching PSO Algorithm for Joint State and Parameter Estimation of Lateral Flow Immunoassay Models. Trans. Comput. Biol. Bioinform. 2012, 9, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowling, P.; Johansson, M. Using real time information for effective dynamic scheduling. Eur. J. Oper. Res. 2002, 139, 230–244. [Google Scholar] [CrossRef]
- Hwang, H.C.; Choi, B.K. Workflow-based dynamic scheduling of job shop operations. Int. J. Comput. Integr. Manuf. 2007, 20, 557–566. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Choi, B. 3D printed fluidic valves for remote operation via external magnetic field. Int. J. Precis. Eng. Manuf. 2016, 17, 937–942. [Google Scholar] [CrossRef]
- Guerrero, G.; Langa, J.A.; Suárez, A. Architecture of attractor determines dynamics on mutualistic complex networks. Nonlinear Anal. Real World Appl. 2017, 34, 17–40. [Google Scholar] [CrossRef]
- Ikram, M.; Sroufe, R.; Zhang, Q. Prioritizing and overcoming barriers to integrated management system (IMS) implementation using AHP and G-TOPSIS. J. Clean. Prod. 2020, 254, 120121. [Google Scholar] [CrossRef]
- Fatima, A.; Cyril, G.; Vincent, V.; Stéphane, J.; Olivier, P. Towards normalization selection of Raman data in the context of protein glycation: Application of validity indices to PCA processed spectra. Analyst 2020, 145, 2945–2957. [Google Scholar] [CrossRef]
- Cheng, Y.; Tao, F.; Zhang, L.; Zhao, D. Dynamic Supply-Demand Matching for Manufacturing Resource Services in Ser-vice-Oriented Manufacturing Systems: A Hypernetwork-Based Solution Framework. In Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference, Charlotte, NC, USA, 8–12 June 2015; V002T04A017-1. p. 7. [Google Scholar] [CrossRef]
- Aslam, M.; Fahmi, A.; Almahdi, F.A.A.; Yaqoob, N. Extension of TOPSIS method for group decision-making under triangular linguistic neutrosophic cubic sets. Soft Comput. 2021, 25, 3359–3376. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Cheng, Y.; Gu, S.; Zheng, T.; Yang, H. SDMSim: A manufacturing service supply–demand matching simulator under cloud environment. Robot. Comput. Manuf. 2017, 45, 34–46. [Google Scholar] [CrossRef]
- Xia, B.; Liu, T.; Ding, T.; Wang, Z. An Improved PSO Localization Algorithm for UWB Sensor Networks. Wirel. Pers. Commun. 2021, 117, 2207–2223. [Google Scholar] [CrossRef]
- Cheng, Y.; Tao, F.; Xu, L.; Zhao, D. Advanced manufacturing systems: Supply–demand matching of manufacturing resource based on complex networks and Internet of Things. Enterp. Inf. Syst. 2016, 12, 780–797. [Google Scholar] [CrossRef]
- Cheng, Y.; Tao, F.; Zhao, D.; Zhang, L. Modeling of manufacturing service supply-demand matching hypernetwork in ser-vice-oriented manufacturing systems. Robot. Comput. Integr. Manuf. 2016, 45, 59–72. [Google Scholar] [CrossRef]
- Raman, M.G.; Somu, N.; Kirthivasan, K.; Sriram, V.S. A Hypergraph and Arithmetic Residue-based Probabilistic Neural Network for classification in Intrusion Detection Systems. Neural Netw. 2017, 92, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.Y.; Zhao, F.Y.; Zhang, C.L.; Yin, Y.; Shu, Y. 3D Rubik’s Cube—online 3D modeling system based on Web GL. In Proceedings of the Technology, Networking, Electronic & Automation Control Conference, Chengdu, China, 12–15 December 2017. [Google Scholar]
- Kim, J.-H.; Song, H.-Y. Hypergraph-Based Binary Locally Repairable Codes with Availability. IEEE Commun. Lett. 2017, 21, 2332–2335. [Google Scholar] [CrossRef]
- Zhang, C.L.; Sheng, B.Y.; Yin, X.Y.; Zhao, F.Y.; Shu, Y. Research and development of off-line services for the 3D automatic printing machine based on cloud manufacturing. J. Ambient. Intell. Humaniz. Comput. 2017, 10, 1109–1128. [Google Scholar] [CrossRef]
- Navabi, M.; Davoodi, A.; Reyhanoglu, M. Optimum fuzzy sliding mode control of fuel sloshing in a spacecraft using PSO algorithm. Acta Astronaut. 2020, 167, 331–342. [Google Scholar] [CrossRef]
- Minguella, J.; Villegas, M.; Poll, B.; Tena, G.; Calero, J.; Ginebra, M.-P.; Korkusuz, F. Automatic Casting of Advanced Technical Ceramic Parts via Open Source High Resolution 3D Printing Machines. Key Eng. Mater. 2015, 631, 269–274. [Google Scholar] [CrossRef]
- Im, S.; Lee, Y.; Kim, J.; Chang, M. A solution for camera occlusion using a repaired pattern from a projector. Int. J. Precis. Eng. Manuf. 2016, 17, 1443–1450. [Google Scholar] [CrossRef]
- Yasser, Y. A new knowledge-based link recommendation approach using a non-parametric multilayer model of dynamic complex networks. Knowl. Based Syst. 2018, 143, 81–92. [Google Scholar]
- Wang, X.; Sheng, B.; Zhang, C.; Xiao, Z.; Wang, H.; Zhao, F. An effective application of 3D cloud printing service quality evaluation in BM-MOPSO. Concurr. Comput. Pr. Exp. 2018, 30, e4977. [Google Scholar] [CrossRef]
- Yasser, Y.; Farshad, S. A statistical infinite feature cascade-based approach to anomaly detection for dynamic social networks. Knowl. Based Syst. 2017, 100, 52–64. [Google Scholar]
- Tao, F.; Zhang, L.; Lu, K.; Zhao, D. Study on manufacturing grid resource service optimal-selection and composition framework. Enterp. Inf. Syst. 2012, 6, 237–264. [Google Scholar] [CrossRef]
- Tao, F.; Li, C.; Liao, T.W.; Laili, Y.J. BGM-BLA: A new algorithm for dynamic migration of virtual machines in cloud computing. IEEE Trans. Serv. Comput. 2016, 99, 910–925. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Xu, B.; Yuab, B.; Zhuang, S.; Zhao, F. Architecture of Cloud 3D Printing Task Modeling for Nodes Dynamic Scheduling and Coupling Based on Complex Networks. IEEE Access 2020, 8, 135208–135222. [Google Scholar] [CrossRef]
- Chen, Z.; Hendrix, W.; Samatova, N.F. Community-based anomaly detection in evolutionary networks. J. Intell. Inf. Syst. 2012, 39, 59–85. [Google Scholar] [CrossRef]
- Heard, N.A.; Weston, D.J.; Platanioti, K.; Hand, D. Bayesian anomaly detection methods for social networks. Ann. Appl. Stat. 2016, 4, 645–662. [Google Scholar] [CrossRef] [Green Version]
- Anwar, H.; Din, I.; Park, K. Projector calibration for 3D scanning using virtual target images. Int. J. Precis. Eng. Manuf. 2012, 13, 125–131. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zhao, F.Y.; Wang, Z.Q. Modeling of Cloud 3D printing service hyper-network in service-oriented manufacturing systems. IEEE Access 2019, 8, 16225–16235. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Laili, Y.; Zhao, C.; Xiao, Y. Multi-task scheduling of distributed 3D printing services in cloud manufacturing. Int. J. Adv. Manuf. Technol. 2018, 96, 3003–3017. [Google Scholar] [CrossRef]
- Seo, Y.B.; Yun, Y.H.; Joo, K.-N. 3D multi-layered film thickness profile measurements based on photometric type imaging ellipsometry. Int. J. Precis. Eng. Manuf. 2016, 17, 989–993. [Google Scholar] [CrossRef]
- Liu, C.; Cao, G.-H.; Qu, Y.-Y.; Cheng, Y.-M. An improved PSO algorithm for time-optimal trajectory planning of Delta robot in intelligent packaging. Int. J. Adv. Manuf. Technol. 2020, 107, 1091–1099. [Google Scholar] [CrossRef]
… | … | |||||
---|---|---|---|---|---|---|
T | … | … | ||||
Q | … | … | ||||
Mat | … | … | ||||
R | … | … | ||||
Rl | … | … | ||||
Flex | … | … | ||||
C | … | … |
--Create table create table C3DS_NODES { ID INTERGER not null, NAME VARCHAR(100), //Order Name ORDERCATEGORY VARCHAR(50), //Order classification SERVICECATEGORY VARCHAR(50), //Service type PRINTMATERIAL NUMBER, //Printing material PROCESSINGTECHNOLOGY VARCHAR(50), //Processing technology STATUS VARCHAR(1), //Access status REMARK VARCHAR(200) } |
RowKey | TimeStamp | Columns | |||
---|---|---|---|---|---|
Orname | Orcategory | Prtechnology | Prmaterial | ||
00001 | 0 | Vatican gypsum relief | 1 | Gypsum 3D printing (PP) | Gypsum |
00002 | 0 | R2D2 robot | 3 | Selective laser sintering (SLS) | Metal powder |
00003 | 1 | Void cube model | 1 | Light curing (SLA) | Photosensitive polymer |
00004 | 0 | Eiffel Tower | 7 | Melt extrusion (FDM) | Thermoplastic material |
--Create table create table C3DS_NODES { ID NUMBER not null, SOURCE NUMBER, //Source node TARGET NUMBER, //Target node TYPE VARCHAR2(20), //Type WEIGHT NUMBER //Weight } |
Candidate Set | Atomic Service | Workshop Name | Equipment Model |
---|---|---|---|
Yourui 3D printing | HW-602 | ||
Jiayi Hi-Tech | JOYE-4035 | ||
Campus store | Aurora LVO A8 | ||
WINBO | WB-SH105 | ||
Beien 3D | BANSOT M2 | ||
3D printing workshop | Dimension SST 1200es | ||
The third brother of Hanbang | Corporate T1 | ||
Artful design workshop | SLM 500 | ||
E-Plus-3D | EP-M100T | ||
Manheng | EOS-M290 | ||
Tongchuang 3D | MOONRAY | ||
Flashcast Technology Studio | Explorer | ||
Yourui 3D printing | DLP-1 | ||
Flashcast Technology Studio | Creator Pro | ||
Wuhan store | Second-generation 3D printing | ||
Jiayi Hi-Tech | JOYE-1010K | ||
Jiayi Hi-Tech | JOYE-1212E | ||
Campus Station of College of Culture | FORTUS 200 mc | ||
3D printing workshop | ProJet 6000 | ||
Yunle Design Studio | ULTRA | ||
High-precision printing | HOFTX2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, C.; Zhuang, J.; Han, H.; Yuan, B.; Liu, J.; Yang, K.; Zhuang, S.; Li, R. Evaluation of Cloud 3D Printing Order Task Execution Based on the AHP-TOPSIS Optimal Set Algorithm and the Baldwin Effect. Micromachines 2021, 12, 801. https://doi.org/10.3390/mi12070801
Zhang C, Zhang C, Zhuang J, Han H, Yuan B, Liu J, Yang K, Zhuang S, Li R. Evaluation of Cloud 3D Printing Order Task Execution Based on the AHP-TOPSIS Optimal Set Algorithm and the Baldwin Effect. Micromachines. 2021; 12(7):801. https://doi.org/10.3390/mi12070801
Chicago/Turabian StyleZhang, Chenglei, Cunshan Zhang, Jiaojiao Zhuang, Hu Han, Bo Yuan, Jiajia Liu, Kang Yang, Shenle Zhuang, and Ronglan Li. 2021. "Evaluation of Cloud 3D Printing Order Task Execution Based on the AHP-TOPSIS Optimal Set Algorithm and the Baldwin Effect" Micromachines 12, no. 7: 801. https://doi.org/10.3390/mi12070801
APA StyleZhang, C., Zhang, C., Zhuang, J., Han, H., Yuan, B., Liu, J., Yang, K., Zhuang, S., & Li, R. (2021). Evaluation of Cloud 3D Printing Order Task Execution Based on the AHP-TOPSIS Optimal Set Algorithm and the Baldwin Effect. Micromachines, 12(7), 801. https://doi.org/10.3390/mi12070801