Chemosensing on Miniaturized Plasmonic Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cleaning Procedure of Coverslips
2.3. Evaporation of Gold and ITO on Glass Coverslips
2.4. Annealing of Gold- and ITO-Coated Coverslips
2.5. Instruments
2.6. Preparation of BPE Solutions
2.7. Statistical Analysis
3. Results
3.1. Optimization of the Annealing Process of Au/ITO Coated Coverslips
Electrical Measurements
3.2. AFM Characterization of Two-Steps Annealed Glass Surfaces
3.3. Optical Properties of Two-Steps Annealed Surfaces
3.3.1. Color Variation of the Coverslip Surface Versus Evaporated Gold Thickness
3.3.2. LSPR Characterization
3.4. LSPR Chemosensing of BPE Traces on Two-Steps ITO/Au Annealed Coverslips
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface Plasmon Resonance in Gold Nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002. [Google Scholar] [CrossRef] [PubMed]
- Petryayeva, E.; Krull, U.J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Takemura, K.; Adegoke, O.; Suzuki, T.; Park, E.Y. A Localized Surface Plasmon Resonance-Amplified Immunofluorescence Biosensor for Ultrasensitive and Rapid Detection of Non-structural Protein 1 of Zika Virus. PLoS ONE 2019, 14, e0211517. [Google Scholar]
- Spackova, B.; Wrobel, P.; Bockova, M.; Homola, J. Optical Biosensors Based on Plasmonic Nanostructures: A Review. Proc. IEEE 2016, 104, 2380–2408. [Google Scholar] [CrossRef]
- Das, A.; Kumar, K.; Dhawan, A. Periodic Arrays of Plasmonic Crossed-bowtie Nanostructures Interspaced with Plasmonic Nanocrosses for Highly Sensitive LSPR based Chemical and Biological Sensing. RSC Adv. 2021, 11, 896–8106. [Google Scholar] [CrossRef]
- Chowdhury, A.D.; Nasrin, F.; Gangopadhyay, R.; Ganganboina, A.B.; Takemura, K.; Kozaki, I.; Honda, H.; Hara, T.; Park, S.; Suzuki, T.; et al. Controlling Distance, Size and Concentration of Nanoconjugates for Optimized LSPR based Biosensors. Biosens. Bioelectron. 2021, 170, 112657. [Google Scholar] [CrossRef]
- Romero, M.R.; Picchio, M.L. Biosensors based on Nanomaterials: Transducers and Modified Surfaces for Diagnostics. In Nanobiomaterial Enginnering: Concepts and Their Applications in Biomedicine and Diagnostics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 15–47. [Google Scholar]
- Zopf, D.; Pittner, A.; Dathe, A.; Grosse, N.; Csaki, A.; Arstila, K.; Toppari, J.J.; Schott, W.; Dontsov, D.; Uhlrich, G.; et al. Plasmonic Nanosensor Array for Multiplexed dna-based Pathogen Detection. ACS Sens. 2019, 4, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Mauriz, E. Clinical Applications of Visual Plasmonic Colorimetric Sensing. Sensors 2020, 20, 6214. [Google Scholar] [CrossRef]
- Zengin, A.; Tamer, U.; Caykara, T. SERS Detection of Hepatitis B virus DNA in a Temperature-Responsitive Sandwich Hybridization Assay. J. Raman Spectrosc. 2017, 48, 668–672. [Google Scholar] [CrossRef]
- Hu, J.; Fu, K.; Bohn, P.W. Whole-cell Pseudomonas Aeruginosa Localized Surface Plasmon Resonance Aptasensor. Anal. Chem. 2018, 90, 2326–2332. [Google Scholar] [CrossRef] [Green Version]
- Schmid, G. Physical and Chemical Consequences of Size-Reduction of Gold: Bioresponse and Biodistribution. J. Clust. Sci. 2014, 25, 29–49. [Google Scholar] [CrossRef]
- Jia, K.; Khaywah, M.Y.; Li, Y.; Bijeon, J.L.; Adam, P.M.; Déturche, R.; Guelorget, B.; François, M.; Louarn, G.; Ionescu, R.E. Strong Improvements of Localized Surface Plasmon Resonance Sensitivity by Using Au/Ag Bimetallic Nanostructures Modified with Polydopamine Films. ACS Appl. Mater. Interfaces 2014, 6, 219–227. [Google Scholar] [CrossRef]
- Hurst, S.J.; Lytton-Jean, A.K.R.; Mirkin, C.A. Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes. Anal. Chem. 2006, 78, 8313–8318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, N.; Ye, C.; Polavarapu, L.; Xu, Q.-H. Controlled Preparation of Au/Ag/SnO 2 Core–Shell Nanoparticles using a Photochemical Method and Applications in LSPR based Sensing. Nanoscale 2015, 7, 9025–9032. [Google Scholar] [CrossRef]
- Liu, J.; Jalali, M.; Mahshid, S.; Wachsmann-Hogiu, S. Are Plasmonic Optical Biosensors Ready for Use in Point-of-Need Applications? Analyst 2020, 145, 364–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widayanti; Abraha, K. Study on the Effect of Nanoparticle Bimetallic Coreshell Au-Ag for Sensitivity Enhancement of Biosensor Based on Surface Plasmon Resonance. J. Phys. Conf. Ser. 2016, 694, 012075. [Google Scholar] [CrossRef]
- Yu, T.; Geng, Z. Strategies to Improve Performances of LSPR Biosensing: Structure, Materials, and Interface Modification. Biosens. Bioelectron. 2021, 174, 112850. [Google Scholar]
- Koirala, K.P.; Ge, J.; Kalyanaraman, R.; Duscher, G. Direct Detection of Highly Localized Metal-Metal Interface Plasmons from Bimetallic Nanoparticles. Plasmonics 2021, 1–8. [Google Scholar] [CrossRef]
- Liao, J.; Zhan, Y.; Liu, Q.; Hong, R.; Tao, C.; Wang, Q.; Lin, H.; Han, Z.; Zhang, D. Tunable Surface Plasmon Resonance of Al-Cu Bimetallic Nanoparticles Thin Films Induced by Pulsed-laser. Appl. Surf. Sci. 2021, 540, 148397. [Google Scholar] [CrossRef]
- Yang, C.-S.; Chang, C.-M.; Chen, P.-H.; Yu, P.; Pan, C.-L. Broadband Terahertz Conductivity and Optical Transmission of Indium-Tin-Oxide (ITO) Nanomaterials. Opt. Express 2013, 21, 16670. [Google Scholar] [CrossRef] [PubMed]
- Mryasov, O.; Freeman, A. Electronic Band Structure of Indium Tin Oxide and Criteria for Transparent Conducting Behavior. Phys. Rev. B 2001, 64, 233111. [Google Scholar] [CrossRef]
- Li, W.-C.; Lee, S.-W. The Characteristic Self-Assembly of Gold nanoparticles over Indium Tin Oxide (ITO) Substrate. Bull. Korean Chem. Soc. 2011, 32, 1133–1137. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Mim, B.-C.; Oh, B.-K.; Choi, J.-W. Rapid and Sensitive Determination of HIV-1 Virus Based on Surface Enhanced Raman Spectroscopy. J. Biomed. Nanotechnol. 2015, 11, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Ray, N.J.; Yoo, J.H.; McKeown, J.T.; Elhadj, S.; Baxamusa, S.H.; Johnson, M.A.; Nguyen, H.T.; Steele, W.A.; Chesser, J.M.; Matthews, M.J.; et al. Enhanced Tunability of Gold Nanoparticle Size, Spacing, and Shape for Large-Scale Plasmonic Arrays. ACS Appl. Nano Mater. 2019, 2, 4395–4401. [Google Scholar] [CrossRef]
- Jung, L.S.; Campbell, C.T.; Chinowsky, T.M.; Mar, M.N.; Yee, S.S. Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films. Langmuir 1998, 14, 5636–5648. [Google Scholar] [CrossRef]
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev. 2011, 111, 3736–3827. [Google Scholar] [CrossRef]
- Wang, D.; Schaaf, P. Thermal Dewetting of Thin Au Films Deposited onto Line-Patterned Substrates. J. Mater. Sci. 2012, 47, 1605–1608. [Google Scholar] [CrossRef]
- Mansourian, A.; Nasir, M.; Dickson, W.; O’Connor, D.; McCarron, R.; Wurtz, G.; Zayats, A.V. Fabrication and Effect of Annealing on Optical Properties of Single and Bimetallic Periodic Array of Different Noble Metals. In Proceedings of the 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), Birmingham, UK, 20–23 August 2012. [Google Scholar]
- Jia, K.; Bijeon, J.L.; Adam, P.M.; Ionescu, R.E. Sensitive Localized Surface Plasmon Resonance Multiplexing Protocols. Anal. Chem. 2012, 84, 8020–8027. [Google Scholar] [CrossRef]
- Karakouz, T.; Maoz, B.M.; Lando, G.; Vaskevich, A.; Rubinstein, I. Stabilization of Gold Nanoparticle Films on Glass by Thermal Embedding. ACS Appl. Mater. Interfaces 2011, 3, 978–987. [Google Scholar] [CrossRef]
Type of Substrate | λmax (nm) | Maximum Optical Density | ODmax/fwhm a (10−3) |
---|---|---|---|
ITO-20 nm/Au-2 nm | 578 | 0.119 | 1.05 |
ITO-20 nm/Au-4 nm | 623 | 0.233 | 1.52 |
ITO-20 nm/Au-6 nm | 653 | 0.285 | 1.72 |
ITO-20 nm/Au-8 nm | 669 | 0.342 | 2.33 |
ITO-10 nm/Au-8 nm | 650 | 0.307 | 2.19 |
ITO-20 nm/Au-8 nm | 653 | 0.342 | 2.33 |
ITO-30 nm/Au-8 nm | 650 | 0.323 | 2.29 |
ITO-40 nm/Au-8 nm | 648 | 0.291 | 1.58 |
Au-8 nm | 581 | 0.290 | 2.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Ionescu, R.E. Chemosensing on Miniaturized Plasmonic Substrates. Micromachines 2021, 12, 275. https://doi.org/10.3390/mi12030275
Wang P, Ionescu RE. Chemosensing on Miniaturized Plasmonic Substrates. Micromachines. 2021; 12(3):275. https://doi.org/10.3390/mi12030275
Chicago/Turabian StyleWang, Pengcheng, and Rodica Elena Ionescu. 2021. "Chemosensing on Miniaturized Plasmonic Substrates" Micromachines 12, no. 3: 275. https://doi.org/10.3390/mi12030275
APA StyleWang, P., & Ionescu, R. E. (2021). Chemosensing on Miniaturized Plasmonic Substrates. Micromachines, 12(3), 275. https://doi.org/10.3390/mi12030275