Duhem Model-Based Hysteresis Identification in Piezo-Actuated Nano-Stage Using Modified Particle Swarm Optimization
Abstract
:1. Introduction
2. Hysteresis Modeling
2.1. Duhem Model for Hysteresis in PEA
2.2. Effect of Parameters on the Duhem Model
- From Figure 2a, it is observed that the increase in the value of causes an increase in the output hysteresis and the overall hysteresis curve moves upwards.
- As seen in Figure 2b,c, the increase in the values of and results in the increase in the width of the hysteresis curve as well as a downward movement in hysteresis curve is observed. Although the effect of change in both and is very similar on output hysteresis, output hysteresis is much more sensitive to a small change in as compared to .
- The effect of change in parameter d on output hysteresis is shown in Figure 2d. A clockwise movement in the hysteresis curve can be observed with the increase in the value of d.
3. Parameter Identification Method
3.1. Modeling of Optimization Problem
3.2. Particle Swarm Optimization
3.3. Modified Particle Swarm Optimization (MPSO)
4. Comparison with Conventional Optimization Algorithms
5. Parameter Identification and Experimental Validation
5.1. Experimental Setup
5.2. Identification of Hysteresis Model
5.3. Experimental Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PSO | Particle Swarm Optimization |
MPSO | Modified Particle Swarm Optimization |
PEA | Piezoelectric Actuator |
References
- Li, Z.; Guo, P.; Wang, Z.; Zhao, L.; Wang, Q. Design and analysis of electromagnetic-piezoelectric hybrid driven three-degree-of-freedom motor. Sensors 2020, 20, 1621. [Google Scholar] [CrossRef] [Green Version]
- Massaro, A.; De Guido, S.; Ingrosso, I.; Cingolani, R.; De Vittorio, M.; Cori, M.; Bertacchini, A.; Larcher, L.; Passaseo, A. Freestanding piezoelectric rings for high efficiency energy harvesting at low frequency. Appl. Phys. Lett. 2011, 98, 053502. [Google Scholar] [CrossRef]
- Yeo, H.G.; Jung, J.; Sim, M.; Jang, J.E.; Choi, H. Integrated piezoelectric aln thin film with SU-8/PDMS supporting layer for flexible sensor array. Sensors 2020, 20, 315. [Google Scholar] [CrossRef] [Green Version]
- Sabarianand, D.; Karthikeyan, P.; Muthuramalingam, T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mech. Syst. Signal Process. 2020, 140, 106634. [Google Scholar] [CrossRef]
- Ismail, M.; Ikhouane, F.; Rodellar, J. The hysteresis Bouc-Wen model, a survey. Arch. Comput. Methods Eng. 2009, 16, 161–188. [Google Scholar] [CrossRef]
- Lin, C.J.; Lin, P.T. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model. Comput. Math. Appl. 2012, 64, 766–787. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Chen, X. A survey of modeling and control issues for piezo-electric actuators. J. Dyn. Syst. Meas. Control 2015, 137, 14001. [Google Scholar] [CrossRef]
- Gu, G.Y.; Zhu, L.M.; Su, C.Y.; Ding, H.; Fatikow, S. Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE Trans. Autom. Sci. Eng. 2014, 13, 313–332. [Google Scholar] [CrossRef]
- Hassani, V.; Tjahjowidodo, T.; Do, T.N. A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 2014, 49, 209–233. [Google Scholar] [CrossRef]
- Duan, J.; Lei, Y.; Li, H. Research on Ferromagnetic Components JA Model-A Review. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 3288–3294. [Google Scholar]
- Gan, J.; Mei, Z.; Chen, X.; Zhou, Y.; Ge, M.F. A Modified Duhem Model for Rate-Dependent Hysteresis Behaviors. Micromachines 2019, 10, 680. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Bernstein, D.S. Piecewise linear identification for the rate-independent and rate-dependent Duhem hysteresis models. IEEE Trans. Autom. Control 2007, 52, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Chen, G. Identification of piezoelectric hysteresis by a novel Duhem model based neural network. Sens. Actuators A Phys. 2017, 264, 282–288. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, J. Research on hysteresis of piezoceramic actuator based on the Duhem model. Sci. World J. 2013, 2013, 814919. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Xiang, B.L.; Ting, R.X. Online parameter identification of the asymmetrical Bouc–Wen model for piezoelectric actuators. Precis. Eng. 2014, 38, 921–927. [Google Scholar] [CrossRef]
- Cacciola, M.; Calcagno, S.; Morabito, F.C.; Versaci, M. Swarm Optimization for Imaging of Corrosion by Impedance Measurements in Eddy Current Test. IEEE Trans. Magn. 2007, 43, 1853–1856. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, K.; Zhang, Y. Parameter identification of piezoelectric hysteresis model based on improved artificial bee colony algorithm. Mod. Phys. Lett. B 2018, 32, 1850131. [Google Scholar] [CrossRef]
- Wang, G.; Chen, G.; Bai, F. Modeling and identification of asymmetric Bouc–Wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm. Sens. Actuators A Phys. 2015, 235, 105–118. [Google Scholar] [CrossRef]
- Tran, H.K.; Chiou, J.S. PSO-based algorithm applied to quadcopter micro air vehicle controller design. Micromachines 2016, 7, 168. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhao, J.; Fei, C.; Li, D.; Zhu, Y.; Li, Z.; Guo, R.; Lou, L.; Feng, W.; Yang, Y. Particle Swarm Optimization Algorithm-Based Design Method for Ultrasonic Transducers. Micromachines 2020, 11, 715. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, J.; Wu, D.; Cai, X.; Wang, H.; Zhang, W.; Chen, J. Hybrid many-objective particle swarm optimization algorithm for green coal production problem. Inf. Sci. 2020, 518, 256–271. [Google Scholar] [CrossRef]
- Wanqing, S.; Chen, X.; Cattani, C.; Zio, E. Multifractional Brownian motion and quantum-behaved partial swarm optimization for bearing degradation forecasting. Complexity 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, J.L.; Chen, B.Y. Parameter identification of hysteresis nonlinear dynamic model for piezoelectric positioning system based on the improved particle swarm optimization method. Adv. Mech. Eng. 2017, 9, l1687814017702813. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.R.; Hwang, Y.; Chae, M.; Kim, T.H. Direct identification of generalized Prandtl–Ishlinskii model inversion for asymmetric hysteresis compensation. ISA Trans. 2017, 70, 209–218. [Google Scholar] [CrossRef]
- Yang, M.J.; Gu, G.Y.; Zhu, L.M. Parameter identification of the generalized Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization. Sens. Actuators A Phys. 2013, 189, 254–265. [Google Scholar] [CrossRef]
- Khan, S.U.; Yang, S.; Wang, L.; Liu, L. A Modified Particle Swarm Optimization Algorithm for Global Optimizations of Inverse Problems. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Qin, H.; Bu, N.; Chen, W.; Yin, Z. An asymmetric hysteresis model and parameter identification method for piezoelectric actuator. Math. Probl. Eng. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Charalampakis, A.; Dimou, C. Identification of Bouc–Wen hysteretic systems using particle swarm optimization. Comput. Struct. 2010, 88, 1197–1205. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, Y.; Peng, Y.; Luo, J.; Xie, S.; Pu, H. Asymmetric Bouc–Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm–based particle swarm optimization identification algorithm. J. Intell. Mater. Syst. Struct. 2019, 30, 1263–1275. [Google Scholar] [CrossRef]
- Fang, J.; Wang, J.; Li, C.; Zhong, W.; Long, Z. A Compound Control Based on the Piezo-Actuated Stage with Bouc–Wen Model. Micromachines 2019, 10, 861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, C.C.; Fung, R.F. Using the modified PSO method to identify a Scott-Russell mechanism actuated by a piezoelectric element. Mech. Syst. Signal Process. 2009, 23, 1652–1661. [Google Scholar] [CrossRef]
- Tian, D.; Shi, Z. MPSO: Modified particle swarm optimization and its applications. Swarm Evol. Comput. 2018, 41, 49–68. [Google Scholar] [CrossRef]
- Long, Z.; Wang, R.; Fang, J.; Dai, X.; Li, Z. Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map. Rev. Sci. Instrum. 2017, 88, 075003. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Anwar, S.; Izadian, A. Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. J. Power Sources 2016, 307, 86–97. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, X.; Cheng, Y.; Sun, X.; Yang, Y. Advanced characterization techniques for solid state lithium battery research. Mater. Today 2020, 36, 139–157. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
Function | Dim | Range | f (min) |
---|---|---|---|
5 | [−100, 100] | 0 | |
5 | [−100, 100] | 0 | |
5 | [−100, 100] | 0 | |
5 | [−5.12, 5.12] | 0 | |
5 | [−20, 20] | 0 | |
5 | [−100, 100] | 0 | |
5 | [−500, 500] | 0 |
Function | GA | PSO | MPSO | |
---|---|---|---|---|
Slandered deviation | 5.147E-36 | 3.09E-37 | 3.17E-37 | |
F1 | Average | 6.146E-36 | 3.21E-37 | 4.58E-37 |
Best | 5.2694E-36 | 3.07E-37 | 1.76E-18 | |
Slandered deviation | 5.64E-18 | 1.80E-18 | 2.81E-19 | |
F2 | Average | 5.031E-18 | 3.81E-18 | 4.58E-19 |
Best | 4.24E-18 | 2.41E-18 | 1.76E-19 | |
Slandered deviation | 2.858E-26 | 1.88E-29 | 7.33E-32 | |
F3 | Average | 2.658E-26 | 2.92E-29 | 1.11E-31 |
Best | 2.552E-26 | 1.29E-29 | 6.17E-33 | |
Slandered deviation | 2.827E-6 | 0.430 | 0 | |
F4 | Average | 2.5519E-6 | 0.746 | 0 |
Best | 1.038E-6 | 0 | 0 | |
Slandered deviation | 5.586E-13 | 0 | 1.78E-15 | |
F5 | Average | 4.805E-13 | 4.44E-15 | 2.07E-15 |
Best | 3.4195E-13 | 4.44E-15 | 8.88E-16 | |
Slandered deviation | 9.394E-17 | 1.058E-31 | 9.713E-32 | |
F6 | Average | 9.393E-17 | 1.136E-31 | 9.762E-32 |
Best | 9.276E-17 | 9.52E-32 | 9.4233E-32 | |
Slandered deviation | 0.27175 | 0.01565583 | 0.009744069 | |
F7 | Average | 0.26305 | 0.0456 | 0.012925 |
Best | 0.204612 | 0.032 | 0 |
Error Values | |||||
---|---|---|---|---|---|
std | avg | Best | Worst | avg Iteration | |
PSO | 0.3552 | 4617.3279 | 4614.4632 | 4619.2971 | 371 |
MPSO | 0.8297 | 4531.3518 | 4529.7149 | 4534.3617 | 286 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, K.; Yan, P.; Li, S. Duhem Model-Based Hysteresis Identification in Piezo-Actuated Nano-Stage Using Modified Particle Swarm Optimization. Micromachines 2021, 12, 315. https://doi.org/10.3390/mi12030315
Ahmed K, Yan P, Li S. Duhem Model-Based Hysteresis Identification in Piezo-Actuated Nano-Stage Using Modified Particle Swarm Optimization. Micromachines. 2021; 12(3):315. https://doi.org/10.3390/mi12030315
Chicago/Turabian StyleAhmed, Khubab, Peng Yan, and Su Li. 2021. "Duhem Model-Based Hysteresis Identification in Piezo-Actuated Nano-Stage Using Modified Particle Swarm Optimization" Micromachines 12, no. 3: 315. https://doi.org/10.3390/mi12030315
APA StyleAhmed, K., Yan, P., & Li, S. (2021). Duhem Model-Based Hysteresis Identification in Piezo-Actuated Nano-Stage Using Modified Particle Swarm Optimization. Micromachines, 12(3), 315. https://doi.org/10.3390/mi12030315