Retention Enhancement in Low Power NOR Flash Array with High-κ–Based Charge-Trapping Memory by Utilizing High Permittivity and High Bandgap of Aluminum Oxide
Abstract
:1. Introduction
2. Device Structure and Model Physics
2.1. Structure of the Proposed Memory Device
2.2. Model Physics and Model Parameters
2.3. Workflow of Study and Calibration Process
3. Results and Discussion
3.1. Demonstration of NOR Flash Array with the Proposed Memory Device Structure
3.2. Retention Enhancement of the Proposed Memory Device Structure
3.3. Proposal for Future Research
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Imran, A.; Zoha, A.; Abu-Dayya, A. Challenges in 5G: How to empower SON with big data for enabling 5G. IEEE Netw. 2014, 28, 27–33. [Google Scholar] [CrossRef]
- Zheng, K.; Yang, Z.; Zhang, K.; Chatzimisios, P.; Yang, K.; Xiang, W. Big data-driven optimization for mobile networks toward 5G. IEEE Netw. 2016, 30, 44–51. [Google Scholar] [CrossRef]
- Han, Q.; Liang, S.; Zhang, H. Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world. IEEE Netw. 2015, 29, 40–45. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Ooi, B.C.; Tan, K.; Zhang, M. In-Memory Big Data Management and Processing: A Survey. IEEE Trans. Knowl. Data Eng. 2015, 27, 1920–1948. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H. An ultralow-power memory-based big-data computing platform by nonvolatile domain-wall nanowire devices. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), Beijing, China, 4–6 September 2013. [Google Scholar]
- Hamdioui, S.; Xie, L.; Anh Du Nguyen, H.; Taouil, M.; Bertles, K.; Corporaal, H.; Jiao, H.; Cathoor, F.; Wouters, D.; Eike, L.; et al. Memristor based computation-in-memory architecture for data-intensive applications. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015. [Google Scholar]
- Yoon, S.-M.; Lee, N.-Y.; Ryu, S.-O.; Choi, K.-J.; Park, Y.-S.; Lee, S.-Y.; Yu, B.-G.; Kang, M.-J.; Choi, S.-J.; Wuttig, M. Sb-Se-based phase-change memory device with lower power and higher speed operations. IEEE Electron. Device Lett. 2006, 27, 445–447. [Google Scholar] [CrossRef]
- Marcon, D.; Van Hove, M.; De Jaeger, B.; Posthuma, N.; Wellekens, D.; You, S.; Kang, X.; Wu, T.-L.; Willems, M.; Stoffels, S.; et al. Direct comparison of GaN-based e-mode architectures (recessed MISHEMT and p-GaN HEMTs) processed on 200 mm GaN-on-Si with Au-free technology. In Proceedings of the SPIE 9363, Gallium Nitride Materials and Devices X, San Francisco, CA, USA, 13 March 2015. [Google Scholar]
- Zhu, W.J.; Ma, T.P.; Zafar, S.; Tamagawa, T. Charge trapping in ultrathin hafnium oxide. IEEE Electron. Device Lett. 2002, 23, 597–599. [Google Scholar] [CrossRef]
- Zou, X.; Jin, L.; Yan, L.; Zhang, Y.; Ai, D.; Zhao, C.; Xu, F.; Li, C.; Huo, Z. The influence of grain boundary interface traps on electrical characteristics of top select gate transistor in 3D NAND flash memory. Solid State Electron. 2019, 153, 67–73. [Google Scholar] [CrossRef]
- Yao, Y.; Li, C.; Huo, Z.L.; Liu, M.; Zhu, C.X.; Gu, C.Z.; Duan, X.F.; Wang, Y.G.; Gu, L.; Yu, R.C. In situ electron holography study of charge distribution in high-κ charge-trapping memory. Nat. Commun. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Hinkle, C.L.; Fulton, C.; Nemanich, R.J.; Lucovsky, G. A novel approach for determining the effective tunneling mass of electrons in HfO2 and other high-K alternative gate dielectrics for advanced CMOS devices. Microelectron. Eng. 2004, 72, 257–262. [Google Scholar] [CrossRef]
- Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; et al. High Endurance Ferroelectric Hafnium Oxide-Based FeFET Memory Without Retention Penalty. IEEE Trans. Electron. Devices 2018, 65, 3769–3774. [Google Scholar] [CrossRef]
- Lee, B.H.; Kang, L.; Qi, W.J.; Nieh, R.; Jeon, Y.; Onishi, K.; Lee, J.C. Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application. In Proceedings of the International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–8 December 1999. [Google Scholar]
- Choi, Y.; Lee, K.; Kim, K.Y.; Kim, S.; Lee, J.; Lee, R.; Kim, H.-M.; Song, Y.S.; Kim, S.; Lee, J.-H.; et al. Simulation of the effect of parasitic channel height on characteristics of stacked gate-all-around nanosheet FET. Solid State Electron. 2020, 164, 107686. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.W.; Song, Y.S.; Kim, S.; Kim, G. Analysis of Current Variation with Work Function Variation in L-Shaped Tunnel-Field Effect Transistor. Micromachines 2020, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Molina-Reyes, J.; Uribe-Vargas, H.; Torres-Torres, R.; Mani-Gonzalez, P.G.; Herrera-Gomez, A. Accurate modeling of gate tunneling currents in Metal-Insulator-Semiconductor capacitors based on ultra-thin atomic-layer deposited Al2O3 and post-metallization annealing. Thin Solid Film. 2017, 638, 48–56. [Google Scholar] [CrossRef]
- Xu, W.C.; He, H.X.; Jing, X.S.; Wu, S.J.; Zhang, Z.; Gao, J.W.; Gao, X.S.; Zhou, G.F.; Lu, X.B.; Liu, J.-M. High performance organic nonvolatile memory transistors based on HfO2 and poly(α-methylstyrene) electret hybrid charge-trapping layers. Appl. Phys. Lett. 2017, 111, 1–5. [Google Scholar] [CrossRef]
- You, H.-C.; Kuo, P.-Y.; Ko, F.-H.; Chao, T.-S.; Lei, T.-F. The Impact of Deep Ni Salicidation and hbox NH3 Plasma Treatment on Nano-SOI FinFETs. IEEE Electron. Device Lett. 2006, 27, 799–801. [Google Scholar] [CrossRef]
- Driussi, F.; Spiga, S.; Lamperti, A.; Congedo, G.; Gambi, A. Simulation Study of the Trapping Properties of HfO2-Based Charge-Trap Memory Cells. IEEE Trans. Electron. Devices 2014, 61, 2056–2063. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.Y.; Lu, X.B.; Zeng, M.; Zhang, Z.; Gao, X.S.; Zhang, X.J.; Liu, J.-M.; Dai, J.Y. Defect states and charge trapping characteristics of HfO2 films for high performance nonvolatile memory applications. Appl. Phys. Lett. 2014, 105, 172902. [Google Scholar] [CrossRef] [Green Version]
- Stesmans, A.; Afanasev, V.V. Defect correlated with positive charge trapping in functional HfO2 layers on (100)Si revealed by electron spin resonance: Evidence for oxygen vacancy? Microelectron. Eng. 2017, 178, 112–115. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Goux, L.; Clima, S.; Govoreanu, B.; Degraeve, R.; Sankar Kar, G.; Fantini, A.; Groesenken, G.; Wouters, D.J.; Jurczak, M.; et al. Endurance/Retention Trade-off on HfO2/Metal Cap 1T1R Bipolar RRAM. IEEE Trans. Electron. Devices 2013, 60, 1114–1121. [Google Scholar] [CrossRef]
- Mitrovic, I.Z.; Luy, Y.; Buiu, O.; Hall, S. Current transport mechanisms in HfO2xSiO21-x/SiO2gate stacks. Microelectron. Eng. 2007, 84, 2306–2309. [Google Scholar] [CrossRef]
- Cerbu, F.; Madia, O.; Andreev, D.V.; Fadida, S.; Eizenberg, M.; Breuil, L.; Lisoni, J.G.; Kittl, J.A.; Strand, J.; Shluger, A.L.; et al. Intrinsic electron traps in atomic-layer deposited HfO2 insulators. Appl. Phys. Lett. 2016, 108, 1–5. [Google Scholar] [CrossRef]
- Bersuker, G.; Sim, J.H.; Park, C.S.; Young, C.D.; Nadkarni, S.V.; Choi, R.; Lee, H.B. Mechanism of Electron Trapping and Characteristics of Traps in HfO2 Gate Stacks. IEEE Trans. Device Mater. Reliab. 2007, 7, 138–145. [Google Scholar] [CrossRef]
- Khosla, R.; Rolseth, E.G.; Kumar, P.; Vadakupudhupalayam, S.S.; Sharma, S.K.; Schulze, J. Charge Trapping Analysis of Metal/Al2O3/SiO2/Si, Gate Stack for Emerging Embedded Memories. IEEE Trans. Device Mater. Reliab. 2017, 17, 80–89. [Google Scholar] [CrossRef]
- Xu, Z.; Huo, Z.; Zhu, C.; Cui, Y.; Wang, M.; Zheng, Z.; Liu, J.; Wang, Y.; Li, F.; Liu, M. Performance-improved nonvolatile memory with aluminum nanocrystals embedded in Al2O3 for high temperature applications. J. Appl. Phys. 2011, 110, 1–5. [Google Scholar] [CrossRef]
- Gu, S.-H.; Hsu, C.-W.; Wang, T.; Lu, W.-P.; Ku, Y.-H.J.; Lu, C.-Y. Numerical Simulation of Bottom Oxide Thickness Effect on Charge Retention in SONOS Flash Memory Cells. IEEE Trans. Electron. Devices 2006, 54, 90–97. [Google Scholar] [CrossRef] [Green Version]
- King, Y.-C.; Liu, T.-J.K.; Hu, C. A long-refresh dynamic/quasi-nonvolatile memory device with 2-nm tunneling oxide. IEEE Electron. Device Lett. 1999, 20, 409–411. [Google Scholar] [CrossRef]
- Hanafi, H.; Tiwari, S.; Khan, I. Fast and long retention-time nano-crystal memory. IEEE Trans. Electron. Devices 1996, 43, 1553–1558. [Google Scholar] [CrossRef]
- Malavena, G.; Spinelli, A.S.; Compagnoni, C.M. Implementing Spike-Timing-Dependent Plasticity and Unsupervised Learning in a Mainstream NOR Flash Memory Array. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 1–4. [Google Scholar]
- Malavena, G.; Filippi, M.; Spinelli, A.S.; Compagnoni, C.M. Unsupervised Learning by Spike-Timing-Dependent Plasticity in a Mainstream NOR Flash Memory Array—Part I: Cell Operation. IEEE Trans. Electron. Devices 2019, 66, 4727–4732. [Google Scholar] [CrossRef]
- Lue, H.-T.; Wang, S.Z.; Lai, E.-K.; Shih, Y.-H.; Lai, S.-C.; Yang, L.-W.; Chen, K.-C.; Ku, J.; Hsieh, K.-Y.; Liu, R.; et al. BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 5 December 2005. [Google Scholar]
- Lue, H.-T.; Wang, S.-Y.; Lai, E.-K.; Hsieh, K.-Y.; Liu, R.; Lu, C.Y. A BE-SONOS (Bandgap Engineered SONOS) NAND for Post-Floating Gate Era Flash Memory. In Proceedings of the 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Taiwan, 23–25 April 2007; pp. 1–2. [Google Scholar]
- Hsu, T.-H.; Lue, H.T.; King, Y.-C.; Hsieh, J.-Y.; Lai, E.-K.; Hsieh, K.-Y.; Liu, R.; Lu, C.-Y. A High-Performance Body-Tied FinFET Bandgap Engineered SONOS (BE-SONOS) for nand-Type Flash Memory. IEEE Electron. Device Lett. 2007, 28, 443–445. [Google Scholar] [CrossRef]
- Song, Y.S.; Jang, T.; Min, K.K.; Baek, M.-H.; Yu, J.; Kim, Y.; Lee, J.-H.; Park, B.-G. Tunneling oxide engineering for improving retention in nonvolatile charge-trapping memory with TaN/Al2O3/HfO2/SiO2/Al2O3/SiO2/Si structure. Jpn. J. Appl. Phys. 2020, 59, 61006. [Google Scholar] [CrossRef]
- Khatami, Y.; Banerjee, K. Steep Subthreshold Slope n- and p-Type Tunnel-FET Devices for Low-Power and Energy-Efficient Digital Circuits. IEEE Trans. Electron. Devices 2009, 56, 2752–2761. [Google Scholar] [CrossRef]
- Yu, J.; Kim, S.; Baek, M.-H.; Min, K.K.; Jang, T.; Song, Y.S.; Park, B.G. Investigation of Ambipolar Current Suppression Using Dual Work Function Metal Gate in L-Shaped Tunnel Field Effect Transistor. In Proceedings of the IEIE Summer Conference, Jeju-do, Korea, 26–28 June 2019. [Google Scholar]
- Kim, Y.; Kim, T.; Beak, M.H.; Jang, T.; Song, Y.S.; Jeon, B.; Park, B.G. An Area Efficient Adaptive Neuron Circuit Exploiting Tunnel Field-Effect Transistor. In Proceedings of the IEIE Summer Conference, Jeju-do, Korea, 26–28 June 2019. [Google Scholar]
- Tripathy, M.R.; Singh, A.K.; Samad, A.; Chander, S.; Baral, K.; Singh, P.K.; Jit, S. Device and Circuit-Level Assessment of GaSb/Si Heterojunction Vertical Tunnel-FET for Low-Power Applications. IEEE Trans. Electron. Devices 2020, 67, 1285–1292. [Google Scholar] [CrossRef]
- Kim, T.; Park, K.; Jang, T.; Baek, M.-H.; Song, Y.S.; Park, B.-G. Input-modulating adaptive neuron circuit employing asymmetric floating-gate MOSFET with two independent control gates. Solid State Electron. 2020, 163, 107667. [Google Scholar] [CrossRef]
- Kim, T.; Song, Y.S.; Park, B.-G. Overflow Handling Integrate-and-Fire Silicon-on-Insulator Neuron Circuit Incorporating a Schmitt Trigger Implemented by Back-Gate Effect. J. Nanosci. Nanotechnol. 2019, 19, 6183–6186. [Google Scholar] [CrossRef]
- Song, Y.S.; Kim, J.H.; Kim, G.; Kim, H.-M.; Kim, S.; Park, B.-G. Improvement in Self-Heating Characteristic by Incorporating Hetero-Gate-Dielectric in Gate-All-Around MOSFETs. IEEE J. Electron. Devices Soc. 2021, 9, 36–41. [Google Scholar] [CrossRef]
- Park, H.; Bersuker, G.; Gilmer, D.; Lim, K.Y.; Jo, M.; Hwang, H.; Padovani, A.; Larcher, L.; Pavan, P.; Taylor, W.; et al. Charge loss in TANOS devices caused by Vt sensing measurements during retention. In Proceedings of the 2010 IEEE International Memory Workshop, Seoul, Korea, 16–19 May 2010; pp. 1–2. [Google Scholar] [CrossRef]
- Congedo, G.; Lamperti, A.; Salicio, O.; Spiga, S. Multi-Layered Al2O3/HfO2/SiO2/Si3N4/SiO2 Thin Dielectrics for Charge Trap Memory Applications. ECS J. Solid State Sci. Technol. 2013, 2, N1–N5. [Google Scholar] [CrossRef]
- Synopsys Inc. Version K-2015.06-SP; Synopsys Inc.: Mountain View, CA, USA, 2017. [Google Scholar]
- Della Marca, V.; Postel-Pellerin, J.; Just, G.; Canet, P.; Ogier, J.-L. Impact of endurance degradation on the programming efficiency and the energy consumption of NOR flash memories. Microelectron. Reliab. 2014, 54, 2262–2265. [Google Scholar] [CrossRef]
- Compagnoni, C.M.; Chiavarone, L.; Calabrese, M.; Ghidotti, M.; Lacaita, A.L.; Spinelli, A.S.; Visconti, A. Fundamental Limitations to the Width of the Programmed VTVT Distribution of nor Flash Memories. IEEE Trans. Electron. Devices 2010, 57, 1761–1767. [Google Scholar] [CrossRef]
- Choi, S.-J.; Han, J.-W.; Kim, S.; Moon, D.-I.; Jang, M.-G.; Kim, J.S.; Kim, K.H.; Lee, G.S.; Oh, J.S.; Song, M.H.; et al. Performance Breakthrough in NOR Flash Memory with Dopant-Segregated Schottky-Barrier (DSSB) SONOS Devices. In Proceedings of the 2009 Symposium on VLSI Technology, Kyoto, Japan, 15–17 June 2009. [Google Scholar]
- Spiga, S.; Congedo, G.; Russo, U.; Lamperti, A.; Salicio, O.; Driussi, F.; Vianello, E. Experimental and simulation study of the program efficiency of HfO2 based charge trapping memories. In Proceedings of the 2010 European Solid State Device Research Conference, Sevila, Spain, 14–16 September 2010; pp. 408–411. [Google Scholar]
Region | Material | Thickness (nm) |
---|---|---|
Tunneling oxide | SiO2 | 3 |
SiO2/Si3N4/SiO2 | 1/1.7/1 | |
SiO2/Al2O3/SiO2 | 1/2.3/1 | |
Blocking oxide | Al2O3 | 6 |
Charge-trapping layer | HfO2 | 4 |
Bottom gate dielectric | SiO2 | 3 |
Channel (length) | Si | 40 |
Channel (thickness) | Si | 12 |
Cell Type | Top Gate Voltage (V) | Bottom Gate Voltage (V) |
---|---|---|
Selected cell | 13 | 0 |
Unselected cell 1 | 13 | 7 |
Unselected cell 2 | 0 | 7 |
Unselected cell 3 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.S.; Park, B.-G. Retention Enhancement in Low Power NOR Flash Array with High-κ–Based Charge-Trapping Memory by Utilizing High Permittivity and High Bandgap of Aluminum Oxide. Micromachines 2021, 12, 328. https://doi.org/10.3390/mi12030328
Song YS, Park B-G. Retention Enhancement in Low Power NOR Flash Array with High-κ–Based Charge-Trapping Memory by Utilizing High Permittivity and High Bandgap of Aluminum Oxide. Micromachines. 2021; 12(3):328. https://doi.org/10.3390/mi12030328
Chicago/Turabian StyleSong, Young Suh, and Byung-Gook Park. 2021. "Retention Enhancement in Low Power NOR Flash Array with High-κ–Based Charge-Trapping Memory by Utilizing High Permittivity and High Bandgap of Aluminum Oxide" Micromachines 12, no. 3: 328. https://doi.org/10.3390/mi12030328
APA StyleSong, Y. S., & Park, B. -G. (2021). Retention Enhancement in Low Power NOR Flash Array with High-κ–Based Charge-Trapping Memory by Utilizing High Permittivity and High Bandgap of Aluminum Oxide. Micromachines, 12(3), 328. https://doi.org/10.3390/mi12030328