Novel Program Scheme of Vertical NAND Flash Memory for Reduction of Z-Interference
Abstract
:1. Introduction
2. Simulation Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmoodi, M.R.; Prezioso, M.; Strukov, D.B. Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization. Nat. Commun. 2019, 11, 5113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Bayat, F.M.; Bavandpour, M.; Klachko, M.; Mahmoodi, M.R.; Prezioso, M.; Likaharev, K.K.; Strukov, D.B. Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 1–4. [Google Scholar]
- Guo, X.; Bayat, F.M.; Prezioso, M.; Chen, Y.; Nguyen, B.; Do, N.; Strukov, D.B. Temperature-insensitive analog vector-by-matrix multiplier based on 55 nm NOR flash memory cells. In Proceedings of the 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 30 April–3 May 2017; pp. 1–4. [Google Scholar]
- Jang, J.; Kim, H.-S.; Cho, W.; Cho, H.; Kim, J.; Shim, S.-I.; Jang, Y.; Jeong, J.-H.; Son, B.-K.; Kim, D.W.; et al. Vertical Cell Array using TCAT (Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory. In Proceedings of the 2009 IEEE Symposium on VLSI Technology, Kyoto, Japan, 15–17 June 2009. [Google Scholar]
- Compagnoni, C.M.; Goda, A.; Spinelli, A.S.; Feeley, P.; Lacaita, A.L.; Visconti, A. Reviewing the Evolution of the NAND Flash Technology. Proc. IEEE 2017, 105, 1609–1633. [Google Scholar] [CrossRef]
- Choe, B.-I.; Lee, J.-K.; Park, B.-G.; Lee, J.-H. Suppression of Read Disturb Fail Caused by Boosting Hot Carrier Injection Effect for 3-D Stack NAND Flash Memories. IEEE Electron Dev. Lett. 2014, 35, 42–44. [Google Scholar] [CrossRef]
- Kwon, D.W.; Lee, J.; Lee, R.; Kim, S.; Lee, J.-H.; Park, B.-G. Novel Boosting Scheme Using Asymmetric Pass Voltage for Reducing Program Disturbance in 3D NAND Flash Memory. IEEE J. Electron Dev. Soc. 2018, 6, 286–290. [Google Scholar] [CrossRef]
- Li, Q.; Shi, L.; Di, Y.; Du, Y.; Xue, C.J.; Yang, C.; Zhuge, Q.; Sha, E.H.M. Improving read performance via selective Vpass reduction on high density 3D NAND flash memory. In Proceedings of the 2017 IEEE 6th Non-Volatile Memory Systems and Applications Symposium (NVMSA), Hsinchu, Taiwan, 16–18 August 2017; pp. 1–4. [Google Scholar]
- Zhang, Y.; Jin, L.; Jiang, D.; Zou, X.; Liu, H.; Huo, Z. A Novel Read Scheme for Read Disturbance Suppression in 3D NAND Flash Memory. IEEE Electron Dev. Lett. 2017, 38, 1669–1672. [Google Scholar] [CrossRef]
- Flash Memory Summit. Available online: https://flashmemorysummit.com/ (accessed on 17 May 2020).
- Han, C.; Wu, Z.; Yang, C.; Xie, L.; Xu, B.; Liu, L.; Liu, L.; Yin, Z.; Jin, L.; Huo, Z. Influence of accumulated charges on deep trench etch process in 3D NAND memory. Semicon. Sci. Technol. 2020, 35, 045003. [Google Scholar] [CrossRef]
- Neumann, J.T.; Klochkov, D.; Korb, T.; Gupta, S.; Avishai, A.; Pichumani, R.; Lee, K.; Buxbaum, A.; Foca, E. 3D analysis of high-aspect ratio features in 3D-NAND. Proc. SPIE 2020, 11325, 1–11. [Google Scholar]
- Ye, Y.; Xia, Z.; Liu, L.; Huo, Z. Investigation of Reducing Bow during High Aspect Ratio Trench Etching in 3D NAND Flash Memory. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018; pp. 1–3. [Google Scholar]
- Choe, H.; Jee, J.; Lim, S.C.; Joe, S.M.; Park, I.H.; Park, H. Machine-Learning-Based Read Reference Voltage Estimation for NAND Flash Memory Systems Without Knowledge of Retention Time. IEEE Access 2020, 8, 176416–176429. [Google Scholar] [CrossRef]
- Ko, K.; Lee, J.K.; Shin, H. Variability-Aware Machine Learning Strategy for 3-D NAND Flash Memories. IEEE Trans. Electron Dev. 2020, 67, 1575–1580. [Google Scholar] [CrossRef]
- Kang, D.; Jeong, W.; Kim, C.; Kim, D.-H.; Cho, Y.-S.; Kang, K.-T.; Ryu, J.; Kang, K.-M.; Lee, S.; Kim, W.; et al. 256 Gb 3b/cell V-NAND Flash Memory with 48 Stacked WL Layers. IEEE J. Solid State Circuits 2017, 52, 210–217. [Google Scholar] [CrossRef]
- Kim, C.; Cho, J.-H.; Jeong, W.; Park, I.-H.; Park, H.-W.; Kim, D.-H.; Kang, D.; Lee, S.; Lee, J.-S.; Kim, W.; et al. A 512Gb 3b/cell 64-Stacked WL 3D V-NAND Flash Memory. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 11–15 February 2017. [Google Scholar]
- Kim, C.; Kim, D.-H.; Jeong, W.; Kim, H.-J.; Park, I.-H.; Park, H.-W.; Lee, J.-H.; Park, J.-Y.; Ahn, Y.-L.; Lee, J.-Y.; et al. 512-Gb 3-b/Cell 64-Stacked WL 3-D-NAND Flash Memory. IEEE J. Solid State Circuits 2018, 53, 124–133. [Google Scholar] [CrossRef]
- Lee, S.; Kim, C.; Kim, M.; Joe, S.-M.; Jang, J.; Kim, S.; Lee, K.; Kim, J.; Park, J.; Lee, H.-J.; et al. A 1Tb 4b/Cell 64-Stacked-WL 3D NAND Flash Memory with 12MB/s Program Throughput. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 11–15 February 2018. [Google Scholar]
- Maejima, H.; Kanda, K.; Fujimura, S.; Takagiwa, T.; Ozawa, S.; Sato, J.; Shindo, Y.; Sato, M.; Kanagawa, N.; Musha, J.; et al. A 512Gb 3b/Cell 3D Flash Memory on a 96-Word-Line-Layer Technology. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 11–15 February 2018. [Google Scholar]
- Kang, D.; Kim, M.; Jeong, S.-C.; Jung, W.; Park, J.; Choo, G.; Shim, D.-K.; Kavala, A.; Kim, S.-B.; Kang, K.-M.; et al. A 512Gb 3-bit/Cell 3D 6th-Generation V-NAND Flash Memory with 82MB/s Write throughput and 1.2Gb/s Interface. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 17–21 February 2019. [Google Scholar]
- Chen, W.-C.; Lue, H.-T.; Chang, K.-P.; Hsiao, Y.-H.; Hsieh, C.-C.; Shih, Y.-H.; Lu, C.-Y. Study of the Programming Sequence Induced Back-Pattern Effect in Split-Page 3D Vertical-Gate (VG) NAND Flash. In Proceedings of the 2014 IEEE International Symposium on VLSI Technology Systems and Application, Hsinchu, Taiwan, 28–30 April 2014. [Google Scholar]
- Lee, S.; Lee, J.-Y.; Park, I.-H.; Park, J.; Yun, S.-W.; Kim, M.-S.; Lee, J.-H.; Kim, M.; Lee, K.; Kim, T.; et al. A 128Gb 2b/cell NAND Flash memory in 14nm Technology with tPROG=640μs and 800MB/s I/O Rate. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 17–21 February 2019. [Google Scholar]
- Synopsys. Sentaurus Manual S-Device; San Jose, CA, USA, L.-Version. 2016. Available online: https://www.synopsys.com/silicon/tcad/device-simulation/sentaurus-device.html/ (accessed on 17 May 2020).
- Nowak, E.; Kim, J.-H.; Kwon, H.-Y.; Kim, Y.-G.; Sim, J.-S.; Lim, S.-H.; Kim, D.-S.; Lee, K.-H.; Park, Y.-K.; Choi, J.-H.; et al. Intrinsic Fluctuations in Vertical NAND Flash Memories. In Proceedings of the 2012 Symposium on VLSI Technology, Honolulu, HI, USA, 12–14 June 2012. [Google Scholar]
- Oh, Y.-T.; Kim, K.-B.; Shin, S.-H.; Sim, H.; Toan, N.V.; Ono, T.; Song, Y.-H. Impact of etch angles on cell characteristics in 3D NAND flash memory. Microelectron. J. 2018, 79, 1–6. [Google Scholar] [CrossRef]
- Lee, J.-K.; Ko, K.; Shin, H. Analysis on Process Variation Effect of 3D NAND Flash Memory Cell through Machine Learning Model. In Proceedings of the 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Penang, Malaysia, 16–18 March 2020. [Google Scholar]
- Kim, H.; Ahn, S.; Shin, Y.G.; Lee, K.; Jung, E. Evolution of NAND Flash Memory: From 2D to 3D as a Storage Market Leader. In Proceedings of the 2017 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 14–17 May 2017; pp. 1–4. [Google Scholar]
- Shim, W.; Yu, S. Technological Design of 3D NAND-Based Compute-in-Memory Architecture for GB-Scale Deep Neural Network. IEEE Electron Dev. Lett. 2021, 42, 160–163. [Google Scholar] [CrossRef]
- Bavandpour, M.; Sahay, S.; Mahmoodi, M.R.; Strukov, D.B. 3D-aCortex: An ultra-compact energy-efficient neurocomputing platform based on commercial 3D-NAND flash memories. arXiv 2019, arXiv:1908.02472. [Google Scholar]
- Xiao, T.P.; Bennett, C.H.; Feinberg, B.; Agarwal, S.; Marinella, M.J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 2020, 7, 031301. [Google Scholar] [CrossRef]
- Yi, S.-I.; Kumar, S.; Williams, R.S. Improved Hopfield Network Optimization using Manufacturable Three-terminal Electronic Synapses. arXiv 2021, arXiv:2104.12288. [Google Scholar]
- Larimian, S.; Mahmoodi, M.R.; Strukov, D.B. Lightweight Integrated Design of PUF and TRNG Security Primitives Based on eFlash Memory in 55-nm CMOS. IEEE Trans. Electron Dev. 2020, 67, 1586–1592. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, S.-i.; Kim, J. Novel Program Scheme of Vertical NAND Flash Memory for Reduction of Z-Interference. Micromachines 2021, 12, 584. https://doi.org/10.3390/mi12050584
Yi S-i, Kim J. Novel Program Scheme of Vertical NAND Flash Memory for Reduction of Z-Interference. Micromachines. 2021; 12(5):584. https://doi.org/10.3390/mi12050584
Chicago/Turabian StyleYi, Su-in, and Jungsik Kim. 2021. "Novel Program Scheme of Vertical NAND Flash Memory for Reduction of Z-Interference" Micromachines 12, no. 5: 584. https://doi.org/10.3390/mi12050584
APA StyleYi, S. -i., & Kim, J. (2021). Novel Program Scheme of Vertical NAND Flash Memory for Reduction of Z-Interference. Micromachines, 12(5), 584. https://doi.org/10.3390/mi12050584