Design and Integration of the Single-Lens Curved Multi-Focusing Compound Eye Camera
Abstract
:1. Introduction
2. Lens Design and Fabrication
3. Result and Discussion
3.1. Shape Measurement
3.2. Optical Test and Characterization
3.3. System Imaging and Processing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, Y.; Cao, J.; Zhang, Y.; Hao, Q. Review of state-of-the-art artificial compound eye imaging systems. Bioinspir. Biomim. 2019, 14, 31002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, L.; McCray, D.L.; Scheiding, S.; Naples, N.J.; Gebhardt, A.; Risse, S.; Eberhardt, R.; Tünnermann, A.; Yi, A.Y. Development of a low cost high precision three-layer 3D artificial compound eye. Opt. Express 2013, 21, 22232–22245. [Google Scholar] [CrossRef]
- Scheiding, S.; Yi, A.Y.; Gebhardt, A.; Li, L.; Risse, S.; Eberhardt, R.; Tünnermann, A. Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. Opt. Express 2011, 19, 23938–23951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radtke, D.; Duparré, J.; Zeitner, U.D.; Tünnermann, A. Laser lithographic fabrication and characterization of a spherical artificial compound eye. Opt. Express 2007, 15, 3067–3077. [Google Scholar] [CrossRef] [PubMed]
- Duparré, J.; Radtke, D.; Tünnermann, A. Spherical Artificial Compound Eye Captures Real Images; SPIE: Bellingham, WA, USA, 2007; p. 64660. [Google Scholar]
- Bian, H.; Wei, Y.; Yang, Q.; Chen, F.; Zhang, F.; Du, G.; Yong, J.; Hou, X. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Appl. Phys. Lett. 2016, 109, 221109. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hao, Y.; Xu, J.; Liu, F.; Lu, J. The Design and Positioning Method of a Flexible Zoom Artificial Compound Eye. Micromachines 2018, 9, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Diao, X.; Li, L.; Hao, Y.; Jiao, Z. Fabrication and Characterization of Inhomogeneous Curved Artificial Compound Eye. Micromachines 2018, 9, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.J.; Kang, E.K.; Ju, G.W.; Song, Y.M.; Lee, Y.T. Shape-controllable, bottom-up fabrication of microlens using oblique angle deposition. Opt. Lett. 2016, 41, 3328–3330. [Google Scholar] [CrossRef]
- Vespini, V.; Coppola, S.; Todino, M.; Paturzo, M.; Bianco, V.; Grilli, S.; Ferraro, P. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Lab Chip 2016, 16, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Greiner, B.; Ribi, W.A.; Warrant, E.J. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res. 2004, 316, 377–390. [Google Scholar] [CrossRef]
- Song, Y.M.; Park, H.G.; Lee, G.J.; Park, J.S. Artificially Engineered Compound Eye Sensing Systems; Springer: Cham, Switzerland, 2016; pp. 157–174. [Google Scholar]
- Song, Y.M.; Xie, Y.; Malyarchuk, V.; Xiao, J.; Jung, I.; Choi, K.; Liu, Z.; Park, H.; Lu, C.; Kim, R.; et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99. [Google Scholar] [CrossRef]
- Floreano, D.; Pericet-Camara, R.; Viollet, S.; Ruffier, F.; Brückner, A.; Leitel, R.; Buss, W.; Menouni, M.; Expert, F.; Juston, R.; et al. Miniature curved artificial compound eyes. Proc. Natl. Acad. Sci. USA 2013, 110, 9267–9272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Yi, A.Y. Development of a 3D artificial compound eye. Opt. Express 2010, 18, 18125–18137. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yi, A.Y. Design and fabrication of a freeform prism array for 3D microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2010, 27, 2613–2620. [Google Scholar] [CrossRef]
- Keum, D.; Jang, K.; Jeon, D.S.; Hwang, C.S.H.; Buschbeck, E.K.; Kim, M.H.; Jeong, K. Xenos peckii vision inspires an ultrathin digital camera. Light Sci. Appl. 2018, 7, 3594. [Google Scholar] [CrossRef] [Green Version]
- Ki-Hun, J.; Jaeyoun, K.; Lee, L.P. Biologically Inspired Artificial Compound Eyes. Science 2014, 312, 557–561. [Google Scholar]
- Shi, C.; Wang, Y.; Liu, C.; Wang, T.; Zhang, H.; Liao, W.; Xu, Z.; Yu, W. SCECam: A spherical compound eye camera for fast location and recognition of objects at a large field of view. Opt. Express 2017, 25, 32333–32345. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, C.; Liu, C.; Yu, X.; Xu, H.; Wang, T.; Qiao, Y.; Yu, W. Fabrication and characterization of a polymeric curved compound eye. J. Micromech. Microeng. 2019, 29, 55008. [Google Scholar] [CrossRef]
- Luo, J.; Guo, Y.; Wang, X.; Fan, F. Design and fabrication of a multi-focusing artificial compound eyes with negative meniscus substrate. J. Micromech. Microeng. 2017, 27, 45011. [Google Scholar] [CrossRef]
- Huang, S.; Li, M.; Shen, L.; Qiu, J.; Zhou, Y. Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures. Opt. Commun. 2017, 393, 213–218. [Google Scholar] [CrossRef]
- Liang, W.; Pan, J.; Su, G.J. One-lens camera using a biologically based artificial compound eye with multiple focal lengths. Optica 2019, 6, 326. [Google Scholar] [CrossRef]
- Lian, G.; Liu, Y.; Tao, K.; Xing, H.; Huang, R.; Chi, M.; Zhou, W.; Wu, Y. Fabrication and Characterization of Curved Compound Eyes Based on Multifocal Microlenses. Micromachines 2020, 11, 854. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, P.; Deng, Y.; Hao, P.; Fan, J.; Chi, M.; Wu, Y. Polymeric microlens array fabricated with PDMS mold-based hot embossing. J. Micromech. Microeng. 2014, 24, 95028. [Google Scholar] [CrossRef]
- Miccio, L.; Finizio, A.; Grilli, S.; Vespini, V.; Paturzo, M.; De Nicola, S.; Ferraro, P. Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy. Opt. Express 2009, 17, 2487–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.L.; Su, G.D. Wide-angle and ultrathin camera module using a curved hexagonal microlens array and all spherical surfaces. Appl. Opt. 2014, 53, H121–H128. [Google Scholar] [CrossRef]
- Zhan, Z.; Wang, K.; Yao, H.; Cao, Z. Fabrication and characterization of aspherical lens manipulated by electrostatic field. Appl. Opt. 2009, 48, 4375. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, K.; Lian, G.; Liu, Y.; Xing, H.; Xing, Y.; Su, X.; Feng, X.; Wu, Y. Design and Integration of the Single-Lens Curved Multi-Focusing Compound Eye Camera. Micromachines 2021, 12, 331. https://doi.org/10.3390/mi12030331
Tao K, Lian G, Liu Y, Xing H, Xing Y, Su X, Feng X, Wu Y. Design and Integration of the Single-Lens Curved Multi-Focusing Compound Eye Camera. Micromachines. 2021; 12(3):331. https://doi.org/10.3390/mi12030331
Chicago/Turabian StyleTao, Kekai, Gaoge Lian, Yongshun Liu, Huaming Xing, Yi Xing, Xiangdong Su, Xin Feng, and Yihui Wu. 2021. "Design and Integration of the Single-Lens Curved Multi-Focusing Compound Eye Camera" Micromachines 12, no. 3: 331. https://doi.org/10.3390/mi12030331
APA StyleTao, K., Lian, G., Liu, Y., Xing, H., Xing, Y., Su, X., Feng, X., & Wu, Y. (2021). Design and Integration of the Single-Lens Curved Multi-Focusing Compound Eye Camera. Micromachines, 12(3), 331. https://doi.org/10.3390/mi12030331