Laser–Material Interactions of High-Quality Ultrashort Pulsed Vector Vortex Beams
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Setup
2.2. Measurement of Single Vector Vortex Beam
3. Results and Discussion
3.1. Ablation Test on Ti-6Al-4V and Cr Thin Film with Gaussian and CV Beam
3.1.1. Intensity Comparison of Gaussian and CV Beams
3.1.2. Single-Beam Ablation Threshold with Gaussian and Ring Modes
3.2. LIPSS Formation on Titanium Alloy with CV Beams
3.3. Multiple Cylindrical Vector (CV) Beam Generation
3.4. Parallel Processing on a Ti-6Al-4V Surface Using Uniform Multiple Cylindrical Vector Beam Arrays
3.5. Similarity of Each Spot: Cosine Similarity
4. Laser Surface Texturing
Continuous Scanning with Different Polarization States
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ndagano, B.; Nape, I.; Cox, M.A.; Rosales-Guzman, C.; Forbes, A. Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication. J. Light. Technol. 2018, 36, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.; Sousa, M.; Almeida, A.C.; Ferreira, L.T.; Costa, A.R.; Novais-Cruz, M.; Ferrás, C.; Sousa, M.M.; Sampaio, P.; Belsley, M.; et al. Coherent-hybrid STED: High contrast sub-diffraction imaging using a bi-vortex depletion beam. Opt. Express 2019, 27, 8092–8111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.-P.; Chen, Z.; Chew, K.-H.; Li, P.-G.; Yu, Z.; Ding, J.; He, S. Structured caustic vector vortex optical field: Manipulating optical angular momentum flux and polarization rotation. Sci. Rep. 2015, 5, 10628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Jukna, V.; Milián, C.; Giust, R.; Ouadghiri-Idrissi, I.; Itina, T.; Dudley, J.M.; Couairon, A.; Courvoisier, F. Tubular filamentation for laser material processing. Sci. Rep. 2015, 5, 8914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl. 2019, 8, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat. Commun. 2012, 3, 989. [Google Scholar] [CrossRef] [PubMed]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, W.; Ling, X.; Fu, X.; Liu, Y.; Ke, Y.; Luo, H. Polarization evolution of vector beams generated by q-plates. Photonics Res. 2017, 5, 64–72. [Google Scholar] [CrossRef]
- Ouyang, J.; Perrie, W.; Allegre, O.; Heil, T.; Jin, Y.; Fearon, E.; Eckford, D.; Edwardson, S.P.; Dearden, G. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt. Express 2015, 23, 12562–12572. [Google Scholar] [CrossRef]
- Yue, F.; Wen, D.; Xin, J.; Gerardot, B.D.; Li, J.; Chen, X. Vector Vortex Beam Generation with a Single Plasmonic Metasurface. ACS Photonics 2016, 3, 1558–1563. [Google Scholar] [CrossRef]
- Sroor, H.; Huang, Y.-W.; Sephton, B.; Naidoo, D.; Vallés, A.; Ginis, V.; Qiu, C.-W.; Ambrosio, A.; Capasso, F.; Forbes, A. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics 2020, 14, 498–503. [Google Scholar] [CrossRef]
- De Oliveira, A.G.; Arruda, M.F.Z.; Soares, W.C.; Walborn, S.P.; Gomes, R.M.; De Araújo, R.M.; Ribeiro, P.H.S. Real-Time Phase Conjugation of Vector Vortex Beams. ACS Photonics 2020, 7, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Nivas, J.J.J.; He, S.; Rubano, A.; Vecchione, A.; Paparo, D.; Marrucci, L.; Bruzzese, R.; Amoruso, S. Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate. Sci. Rep. 2015, 5, 17929. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.; Michalowski, A.; Abdou-Ahmed, M.; Onuseit, V.; Rominger, V.; Kraus, M.; Graf, T. Effects of Radial and Tangential Polarization in Laser Material Processing. Phys. Procedia 2011, 12, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Chabrol, G.R.; Ciceron, A.; Twardowski, P.; Pfeiffer, P.; Flury, M.; Mermet, F.; Lecler, S. Investigation of diffractive optical element femtosecond laser machining. Appl. Surf. Sci. 2016, 374, 375–378. [Google Scholar] [CrossRef]
- Hayasaki, Y.; Sugimoto, T.; Takita, A.; Nishida, N. Variable holographic femtosecond laser processing by use of a spatial light modulator. Appl. Phys. Lett. 2005, 87, 031101. [Google Scholar] [CrossRef]
- Silvennoinen, M.; Kaakkunen, J.; Paivasaari, K.; Vahimaa, P. Parallel femtosecond laser ablation with individually controlled intensity. Opt. Express 2014, 22, 2603–2608. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.; Macdonald, J.R.; Kar, A.K. Ultrafast laser inscription: Perspectives on future integrated applications. Laser Photonics Rev. 2014, 8, 827–846. [Google Scholar] [CrossRef] [Green Version]
- Mauclair, C.; Cheng, G.; Huot, N.; Audouard, E.; Rosenfeld, A.; Hertel, I.V.; Stoian, R. Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. Opt. Express 2009, 17, 3531–3542. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Allegre, O.J.; Perrie, W.; Abrams, K.; Ouyang, J.; Fearon, E.; Edwardson, S.P.; Dearden, G. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt. Express 2013, 21, 25333–25343. [Google Scholar] [CrossRef] [PubMed]
- Allegre, O.J.; Jin, Y.; Perrie, W.; Ouyang, J.; Fearon, E.; Edwardson, S.P.; Dearden, G. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt. Express 2013, 21, 21198–21207. [Google Scholar] [CrossRef] [PubMed]
- Hamazaki, J.; Morita, R.; Chujo, K.; Kobayashi, Y.; Tanda, S.; Omatsu, T. Optical-vortex laser ablation. Opt. Express 2010, 18, 2144–2151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-P.; Wang, F.; Poon, T.-C.; Fan, S.; Xu, W. Fast generation of full analytical polygon-based computer-generated holograms. Opt. Express 2018, 26, 19206–19224. [Google Scholar] [CrossRef]
- Pozzi, P.; Maddalena, L.; Ceffa, N.; Soloviev, O.; Vdovin, G.; Carroll, E.; Verhaegen, M. Fast Calculation of Computer Generated Holograms for 3D Photostimulation through Compressive-Sensing Gerchberg–Saxton Algorithm. Methods Protoc. 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, F.; Pu, M.; Guo, Y.; Li, X.; Ma, X.; Wang, C.; Luo, X. Quasi-Continuous Metasurface Beam Splitters Enabled by Vector Iterative Fourier Transform Algorithm. Materials 2021, 14, 1022. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhu, W.H.; Gong, J.F.; Zhang, K.X.; Xie, H.Y. The Study of Various Dammann Grating. In Proceedings of the 2010 Symposium on Photonics and Optoelectronics, Chengdu, China, 19–21 June 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Kuang, Z.; Perrie, W.; Liu, D.; Edwardson, S.P.; Jiang, Y.; Fearon, E.; Watkins, K.G.; Dearden, G. Ultrafast laser parallel microprocessing using high uniformity binary Dammann grating generated beam array. Appl. Surf. Sci. 2013, 273, 101–106. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, L. Numerical study of Dammann array illuminators. Appl. Opt. 1995, 34, 5961–5969. [Google Scholar] [CrossRef]
- Tang, Y.; Perrie, W.; Schille, J.; Loeschner, U.; Li, Q.; Liu, D.; Edwardson, S.P.; Forbes, A.; Dearden, G. High-quality vector vortex arrays by holographic and geometric phase control. J. Phys. D: Appl. Phys. 2020, 53, 465101. [Google Scholar] [CrossRef]
- Ndagano, B.; Sroor, H.; McLaren, M.; Rosales-Guzmán, C.; Forbes, A. Beam quality measure for vector beams. Opt. Lett. 2016, 41, 3407–3410. [Google Scholar] [CrossRef]
- Sroor, H.; Lisa, N.; Naidoo, D.; Litvin, I.; Forbes, A. Purity of Vector Vortex Beams through a Birefringent Amplifier. Phys. Rev. Appl. 2018, 9, 044010. [Google Scholar] [CrossRef] [Green Version]
- McLaren, M.; Konrad, T.; Forbes, A. Measuring the nonseparability of vector vortex beams. Phys. Rev. A 2015, 92, 023833. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.B.; Huang, T.W.; Xiao, K.D.; Wu, G.Z.; Yang, S.L.; Li, R.; Yang, Y.C.; Long, T.Y.; Zhang, H.; Wu, S.Z.; et al. Controlling multiple filaments by relativistic optical vortex beams in plasmas. Phys. Rev. E 2016, 94, 033202. [Google Scholar] [CrossRef] [PubMed]
- Vallone, G.; Parisi, G.; Spinello, F.; Mari, E.; Tamburini, F.; Villoresi, P. General theorem on the divergence of vortex beams. Phys. Rev. A 2016, 94, 023802. [Google Scholar] [CrossRef] [Green Version]
- Ashkenasi, D.; Lorenz, M.; Stoian, R.; Rosenfeld, A. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: The role of incubation. Appl. Surf. Sci. 1999, 150, 101–106. [Google Scholar] [CrossRef]
- Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O.J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S.P.; et al. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications. J. Phys. D Appl. Phys. 2018, 51, 095603. [Google Scholar] [CrossRef] [Green Version]
r (Ipeak) | Intensity Expression | Peak Intensity | |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Perrie, W.; Rico Sierra, D.; Li, Q.; Liu, D.; Edwardson, S.P.; Dearden, G. Laser–Material Interactions of High-Quality Ultrashort Pulsed Vector Vortex Beams. Micromachines 2021, 12, 376. https://doi.org/10.3390/mi12040376
Tang Y, Perrie W, Rico Sierra D, Li Q, Liu D, Edwardson SP, Dearden G. Laser–Material Interactions of High-Quality Ultrashort Pulsed Vector Vortex Beams. Micromachines. 2021; 12(4):376. https://doi.org/10.3390/mi12040376
Chicago/Turabian StyleTang, Yue, Walter Perrie, David Rico Sierra, Qianliang Li, Dun Liu, Stuart P. Edwardson, and Geoff Dearden. 2021. "Laser–Material Interactions of High-Quality Ultrashort Pulsed Vector Vortex Beams" Micromachines 12, no. 4: 376. https://doi.org/10.3390/mi12040376
APA StyleTang, Y., Perrie, W., Rico Sierra, D., Li, Q., Liu, D., Edwardson, S. P., & Dearden, G. (2021). Laser–Material Interactions of High-Quality Ultrashort Pulsed Vector Vortex Beams. Micromachines, 12(4), 376. https://doi.org/10.3390/mi12040376