Directional and Fast Photoluminescence from CsPbI3 Nanocrystals Coupled to Dielectric Circular Bragg Gratings
Abstract
:1. Introduction
2. Experimental Section
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Numerical Simulation
Appendix A.2. Synthesis of the Perovskite NCs
Appendix A.3. Fabrication of the CBGs
Appendix A.4. Coupling Device Preparation
Appendix A.5. Optical Measurement
References
- Zhang, Q.; Yin, Y.D. All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges. ACS Cent. Sci. 2018, 4, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Y.H.; Shen, Q.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; et al. Highly Luminescent Phase-Stable CsPbl3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 2017, 11, 10373–10383. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Chen, B.; Hua, Y.; Liu, J.; Liu, Z.; Wei, Y.; Liu, S.; Hu, A.; Shen, X.; Zhang, Y.; et al. CMOS Compatible High-Performance Nanolasing Based on Perovskite-SiN Hybrid Integration. Adv. Opt. Mater. 2020, 8, 2000453. [Google Scholar] [CrossRef]
- Yang, Z.L.; Pelton, M.; Bodnarchuk, M.I.; Kovalenko, M.V.; Waks, E. Spontaneous emission enhancement of colloidal perovskite nanocrystals by a photonic crystal cavity. Appl. Phys. Lett. 2017, 111, 221104. [Google Scholar] [CrossRef]
- Fong, C.F.; Yin, Y.; Chen, Y.; Rosser, D.; Xing, J.; Majumdar, A.; Xiong, Q. Silicon nitride nanobeam enhanced emission from all-inorganic perovskite nanocrystals. Opt. Express 2019, 27, 18673–18682. [Google Scholar] [CrossRef] [Green Version]
- Yakunin, S.; Protesescu, L.; Kovalenko, M.V.; Krieg, F.; Bodnarchuk, M.I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 1–9. [Google Scholar]
- Tang, B.; Hu, Y.J.; Dong, H.; Sun, L.; Zhao, B.; Jiang, X.; Zhang, L. An All-Inorganic Perovskite-Phase Rubidium Lead Bromide Nanolaser. Angew. Chem. Int. Ed. 2019, 58, 16280–16286. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, C.; Wang, K.; Wang, S.; Xiao, S.; Song, Q. Lead Halide Perovskite Nanoribbon Based Uniform Nanolaser Array on Plasmonic Grating. ACS Photonics 2017, 4, 649–656. [Google Scholar] [CrossRef]
- Zhang, N.; Fan, Y.; Wang, K.; Gu, Z.; Wang, Y.; Ge, L.; Xiao, S.; Song, Q. All-optical control of lead halide perovskite microlasers. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Wang, K.Y.; Sun, S.; Zhang, C.; Sun, W.; Gu, Z.; Xiao, S.; Song, Q. Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors. Mater. Chem. Front. 2017, 1, 477–481. [Google Scholar] [CrossRef] [Green Version]
- De Giorgi, M.L.; Anni, M. Amplified spontaneous emission and lasing in lead halide perovskites: State of the art and perspectives. Appl. Sci. 2019, 9, 4591. [Google Scholar] [CrossRef] [Green Version]
- Stranks, S.D.; Snaith, H.J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402. [Google Scholar] [CrossRef]
- Zou, C.; Huang, C.Y.; Sanehira, E.M.; Luther, J.M.; Lin, L.Y. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes. Nanotechnology 2017, 28, 455201. [Google Scholar] [CrossRef]
- Liu, M.N.; Zhang, H.; Gedamu, D.; Fourmont, P.; Rekola, H.; Hiltunen, A.; Cloutier, S.G.; Nechache, R.; Priimagi, A.; Vivo, P. Halide Perovskite Nanocrystals for Next-Generation Optoelectronics. Small 2019, 15, 1900801. [Google Scholar] [CrossRef]
- Zhang, H.C.; Liu, M.; Yang, W.; Judin, L.; Hukka, T.I.; Priimagi, A.; Deng, Z.; Vivo, P. Thionation Enhances the Performance of Polymeric Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells. Adv. Mater. Interfaces 2019, 6, 1901036. [Google Scholar] [CrossRef]
- Wu, W.Q.; Liao, J.F.; Zhong, J.X.; Xu, Y.F.; Wang, L.; Huang, J. Suppressing Interfacial Charge Recombination in Electron-Transport-Layer-Free Perovskite Solar Cells to Give an Efficiency Exceeding 21%. Angew. Chem. Int. Ed. 2020, 59, 21166–21173. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Li, S.X.; Xu, Y.S.; Li, C.L.; Guo, Q.; Wang, G.; Xia, H.; Fang, H.H.; Shen, L.; Sun, H.B. Perovskite Single-Crystal Microwire-Array Photodetectors with Performance Stability beyond 1 Year. Adv. Mater. 2020, 32, 2001998. [Google Scholar] [CrossRef]
- Dou, L.; Yang, Y.M.; You, J.; Hong, Z.; Chang, W.H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef]
- Utzat, H.; Sun, W.; Kaplan, A.E.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N.D.; Shulenberger, K.E.; Perkinson, C.F.; Kovalenko, M.V.; et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, C.Y.; Chen, L.; Song, N.; Lv, Y.; Hu, F.; Sun, C.; William, W.Y.; Zhang, C.; Wang, X.; Zhang, Y.; et al. Bright-Exciton Fine-Structure Splittings in Single Perovskite Nanocrystals. Phys. Rev. Lett. 2017, 119, 026401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Yin, C.; Zhang, C.; Yu, W.W.; Wang, X.; Zhang, Y.; Xiao, M. Quantum Interference in a Single Perovskite Nanocrystal. Nano Lett. 2019, 19, 4442–4447. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Y.; Wei, Y.; Chen, B.; Liu, Z.; He, Z.; Xing, Z.; Liu, S.; Huang, P.; Chen, Y.; Gao, Y.; et al. Directional and Fast Photoluminescence from CsPbI3 Nanocrystals Coupled to Dielectric Circular Bragg Gratings. Micromachines 2021, 12, 422. https://doi.org/10.3390/mi12040422
Hua Y, Wei Y, Chen B, Liu Z, He Z, Xing Z, Liu S, Huang P, Chen Y, Gao Y, et al. Directional and Fast Photoluminescence from CsPbI3 Nanocrystals Coupled to Dielectric Circular Bragg Gratings. Micromachines. 2021; 12(4):422. https://doi.org/10.3390/mi12040422
Chicago/Turabian StyleHua, Yan, Yuming Wei, Bo Chen, Zhuojun Liu, Zhe He, Zeyu Xing, Shunfa Liu, Peinian Huang, Yan Chen, Yunan Gao, and et al. 2021. "Directional and Fast Photoluminescence from CsPbI3 Nanocrystals Coupled to Dielectric Circular Bragg Gratings" Micromachines 12, no. 4: 422. https://doi.org/10.3390/mi12040422
APA StyleHua, Y., Wei, Y., Chen, B., Liu, Z., He, Z., Xing, Z., Liu, S., Huang, P., Chen, Y., Gao, Y., & Liu, J. (2021). Directional and Fast Photoluminescence from CsPbI3 Nanocrystals Coupled to Dielectric Circular Bragg Gratings. Micromachines, 12(4), 422. https://doi.org/10.3390/mi12040422