Biosensing Near the Exceptional Point Based on Resonant Optical Tunneling Effect
Abstract
:1. Introduction
2. Device Design
3. Theoretical Analysis and Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- KATO, T. Peturbation Teory for Linear Operators; Springer: New York, NY, USA, 1966. [Google Scholar]
- Berry, M.V. Physics of Nonhermitian Degeneracies. Czechoslov. J. Phys. 2004, 54, 1039–1047. [Google Scholar] [CrossRef]
- El-Ganainy, R.; Makris, K.G.; Christodoulides, D.N.; Musslimani, Z.H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 2007, 32, 2632–2634. [Google Scholar] [CrossRef]
- Longhi, S. Bloch Oscillations in Complex Crystals with PT Symmetry. Phys. Rev. Lett. 2009, 103, 4. [Google Scholar] [CrossRef]
- Peng, B.; Ozdemir, S.K.; Lei, F.C.; Monifi, F.; Gianfreda, M.; Long, G.L.; Fan, S.H.; Nori, F.; Bender, C.M.; Yang, L. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 2014, 10, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Miri, M.A.; Alu, A. Exceptional points in optics and photonics. Science 2019, 363, eaar7709. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.G.; Ozdemir, S.K.; He, L.N.; Yang, L. Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Express 2010, 18, 23535–23543. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Ozdemir, S.K.; Liertzer, M.; Chen, W.J.; Kramer, J.; Yilmaz, H.; Wiersig, J.; Rotter, S.; Yang, L. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA 2016, 113, 6845–6850. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Shen, Y.C.; Veronis, G. Non-PT-symmetric two-layer cylindrical waveguide for exceptional-point-enhanced optical devices. Opt. Express 2019, 27, 37494–37507. [Google Scholar] [CrossRef]
- Lin, Z.; Pick, A.; Loncar, M.; Rodriguez, A.W. Enhanced Spontaneous Emission at Third-Order Dirac Exceptional Points in Inverse-Designed Photonic Crystals. Phys. Rev. Lett. 2016, 117, 107402. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Shen, Y.C.; Min, C.J.; Fan, S.H.; Veronis, G. Unidirectional reflectionless light propagation at exceptional points. Nanophotonics 2017, 6, 977–996. [Google Scholar] [CrossRef]
- Guo, A.; Salamo, G.J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G.A.; Christodoulides, D.N. Observation of PT-Symmetry Breaking in Complex Optical Potentials. Phys. Rev. Lett. 2009, 103, 4. [Google Scholar] [CrossRef] [Green Version]
- Miller, J. Exceptional points make for exceptional sensors. Phys. Today 2017, 70, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Wiersig, J. Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection. Phys. Rev. Lett. 2014, 112, 5. [Google Scholar] [CrossRef]
- Wiersig, J. Sensors operating at exceptional points: General theory. Phys. Rev. A 2016, 93, 9. [Google Scholar] [CrossRef]
- Chen, W.J.; Ozdemir, S.K.; Zhao, G.M.; Wiersig, J.; Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 2017, 548, 192–196. [Google Scholar] [CrossRef]
- Hodaei, H.; Hassan, A.U.; Wittek, S.; Garcia-Gracia, H.; El-Ganainy, R.; Christodoulides, D.N.; Khajavikhan, M. Enhanced sensitivity at higher-order exceptional points. Nature 2017, 548, 187–191. [Google Scholar] [CrossRef]
- Yeh, p.; Hendry, M. Optical waves in layered media. Phys. Today 1990, 43, 77–78. [Google Scholar] [CrossRef]
- Hayashi, S.; Kurokawa, H.; Oga, H. Observation of Resonant Photon Tunneling in Photonic Double Barrier Structures. Opt. Rev. 1999, 6, 204–210. [Google Scholar] [CrossRef]
- Jian, A.Q.; Wei, C.G.; Guo, L.F.; Hu, J.; Tang, J.; Liu, J.; Zhang, X.M.; Sang, S.B. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect. Sensors 2017, 17, 389. [Google Scholar] [CrossRef] [Green Version]
- Jian, A.Q.; Zou, L.; Bai, G.; Duan, Q.Q.; Zhang, Y.X.; Zhang, Q.W.; Sang, S.B.; Zhang, X.M. Highly sensitive cell concentration detection by resonant optical tunneling effect. J. Lightwave Technol. 2019, 37, 2800–2806. [Google Scholar] [CrossRef]
- Jian, A.; Jiao, M.; Zhang, Y.; Zhang, Q.; Xue, X.; Sang, S.; Zhang, X. Enhancement of the volume refractive index sensing by ROTE and its application on cancer and normal cells discrimination. Sens. Actuators A Phys. 2020, 313, 112177. [Google Scholar] [CrossRef]
- Jian, A.; Liu, F.; Bai, G.; Zhang, B.; Zhang, Y.; Zhang, Q.; Xue, X.; Sang, S.; Zhang, X. Parity-time symmetry based on resonant optical tunneling effect for biosensing. Opt. Commun. 2020, 475, 125815. [Google Scholar] [CrossRef]
- Cham, J. Top 10 physics discoveries of the last 10 years. .Nat. Phys. 2015, 11, 799. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Ozdemir, S.K.; Rotter, S.; Yilmaz, H.; Liertzer, M.; Monifi, F.; Bender, C.M.; Nori, F.; Yang, L. Loss-induced suppression and revival of lasing. Science 2014, 346, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.D.; White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 2011, 5, 591–597. [Google Scholar] [CrossRef]
- Guo, Y.B.; Li, H.; Reddy, K.; Shelar, H.S.; Nittoor, V.R.; Fan, X.D. Optofluidic Fabry-Perot cavity biosensor with integrated flow-through micro-/nanochannels. Appl. Phys. Lett. 2011, 98, 3. [Google Scholar] [CrossRef] [Green Version]
- Boucher, D.; Cournoyer, D.; Stanners, C.P.; Fuks, A. Studies on the control of gene expression of the carcinoembryonic antigen family in human tissue. Cancer Res. 1989, 49, 847–852. [Google Scholar]
- Zhang, X.; Zou, Y.C.; An, C.; Ying, K.J.; Chen, X.; Wang, P. A miniaturized immunosensor platform for automatic detection of carcinoembryonic antigen in EBC. Sens. Actuator B Chem. 2014, 205, 94–101. [Google Scholar] [CrossRef]
- Zou, Y.C.; Wang, L.; Zhao, C.; Hu, Y.J.; Xu, S.; Ying, K.J.; Wang, P.; Chen, X. CEA, SCC and NSE levels in exhaled breath condensate-possible markers for early detection of lung cancer. J. Breath Res. 2013, 7, 10. [Google Scholar] [CrossRef]
- Moro, D.; Villemain, D.; Vuillez, J.P.; Agnius Delord, C.; Brambilla, C. CEA CYFRA21-1 and SCC in non-small cell lung cancer. Lung Cancer 1995, 13, 169–176. [Google Scholar] [CrossRef]
- Haus, H.A. Waves and Fields in Optoelectronics; Prentice Hall: Hoboken, NJ, USA, 1984. [Google Scholar]
- Polster, H.D. A Symmetrical All-Dielectric Interference Filter. J. Opt. Soc. Am. 1952, 42, 21–24. [Google Scholar] [CrossRef]
- Langbein, W. No exceptional precision of exceptional-point sensors. Phys. Rev. A 2018, 98, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.Z.; Sweeney, W.; Hsu, C.W.; Yang, L.; Stone, A.D.; Jiang, L. Quantum Noise Theory of Exceptional Point Amplifying Sensors. Phys. Rev. Lett. 2019, 123, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Material | Symbol | Value |
---|---|---|---|
RI of input prism | K9 glass | nin | 1.5000−9.84 × 10−8i |
RI of the first tunneling layer Width of the first tunneling layer | Polydimethylsiloxane (PDMS) | n1 d1 | 1.396–5 × 10−6i 5.5 μm |
RI of the loss cavity Width of the loss cavity | Silicate glass | n2 d2 | 1.65−1.2 × 10−8i 800 μm |
RI of coupling layer Width of coupling layer | Sample | n3 d3 | 1.3506−6.4538 × 10−6i 4.28 μm |
RI of the sensing cavity Width of the sensing cavity | Silicate glass | n4 d4 | 1.65−1.6 × 10−8i 800 μm |
RI of the second tunneling layer Width of the second tunneling layer | Polydimethylsiloxane (PDMS) | n5 d5 | 1.396–5 × 10−6i 5.5 μm |
RI of output prism | K9 glass | nout | 1.5000−9.84 × 10−8i |
Incident angle | θ | 68.84° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yan, P.; Liu, F.; Jian, A.; Sang, S. Biosensing Near the Exceptional Point Based on Resonant Optical Tunneling Effect. Micromachines 2021, 12, 426. https://doi.org/10.3390/mi12040426
Liu Y, Yan P, Liu F, Jian A, Sang S. Biosensing Near the Exceptional Point Based on Resonant Optical Tunneling Effect. Micromachines. 2021; 12(4):426. https://doi.org/10.3390/mi12040426
Chicago/Turabian StyleLiu, Yang, Pengyun Yan, Feng Liu, Aoqun Jian, and Shengbo Sang. 2021. "Biosensing Near the Exceptional Point Based on Resonant Optical Tunneling Effect" Micromachines 12, no. 4: 426. https://doi.org/10.3390/mi12040426
APA StyleLiu, Y., Yan, P., Liu, F., Jian, A., & Sang, S. (2021). Biosensing Near the Exceptional Point Based on Resonant Optical Tunneling Effect. Micromachines, 12(4), 426. https://doi.org/10.3390/mi12040426