An Energy Harvester with Temperature Threshold Triggered Cycling Generation for Thermal Event Autonomous Monitoring
Abstract
:1. Introduction
2. Design and Modeling
2.1. Working Principle
2.2. Thermal Simulation of the Bimetallic Cantilever
2.3. Temperature Threshold Simulation
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boughaleb, J.; Arnaud, A.; Cottinet, P.J.; Monfray, S.; Gelenne, P.; Kermel, P.; Quenard, S.; Boeuf, F.; Guyomar, D.; Skotnicki, T. Thermal modelling and optimization of a thermally matched energy harvester. Smart Mater. Struct. 2015, 24, 185–195. [Google Scholar] [CrossRef]
- Olsson, R.H.; Bogoslovov, R.B.; Gordon, C. Event Driven Persistent Sensing: Overcoming the Energy and Lifetime Limitations in Unattended Wireless Sensors. In Proceedings of the 15th IEEE Sensors Conference, Orlando, FL, USA, 30 October–2 November 2016. [Google Scholar]
- Kang, S.B.; Kim, J.H.; Jeong, M.H.; Sanger, A.; Kim, C.U.; Kim, C.M.; Choi, K.J. Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility. Light-Sci. Appl. 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Ma, J.; Wu, X.; Lin, L.; Wang, X. Polymeric nanofibers with ultrahigh piezoelectricity via self-orientation of nanocrystals. ACS Nano 2017, 11, 1901–1910. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Y.; Mei, D.; Chen, Z. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 2018, 215, 690–698. [Google Scholar] [CrossRef]
- Ravi, K.; Shashank, P. A review on low-grade thermal energy harvesting: Materials, methods and devices. Materials 2018, 11, 1433. [Google Scholar]
- Yang, S.M.; Wang, S.H. Development of a thermoelectric energy generator with double cavity by standard cmos process. IEEE Sens. J. 2020, 21, 250–256. [Google Scholar] [CrossRef]
- Hinterleitner, B.; Knapp, I.; Poneder, M.; Shi, Y.; Müller, H.; Eguchi, G.; Eisenmenger-Sittner, C.; Stöger-Pollach, M.; Kakefuda, Y.; Kawamoto, N.; et al. Thermoelectric performance of a metastable thin-film Heusler alloy. Nature 2019, 576, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Qiu, P.; Tang, Y.; Bai, S.; Xing, T.; Chu, H.S.; Zhang, Q.; Lu, P.; Zhang, T.; Ren, D.; et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 degrees C. Energy Environ. Sci. 2016, 9, 3120–3127. [Google Scholar] [CrossRef]
- Hunter, S.R.; Lavrik, N.V.; Rajic, S.; Datskos, P.G. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques. In Proceedings of the Conference on Energy Harvesting and Storage: Materials, Devices, and Applications III, Baltimore, MD, USA, 23–24 April 2012; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2012. [Google Scholar]
- Leng, Q.; Chen, L.; Guo, H.; Liu, J.; Liu, G.; Hu, C.; Xi, Y. Harvesting heat energy from hot/cold water with a pyroelectric generator. J. Mater. Chem. A 2014, 2, 11940–11947. [Google Scholar] [CrossRef]
- Kishore, R.A.; Priya, S. A review on design and performance of thermomagnetic devices. Renew. Sustain. Energy Rev. 2018, 81, 33–44. [Google Scholar] [CrossRef]
- Chun, J.; Song, H.C.; Kang, M.G.; Kang, H.B.; Kishore, R.A.; Priya, S. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System. Sci. Rep. 2017, 7, 41383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepak, K.; Varma, V.B.; Prasanna, G.; Ramanujan, R.V. Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity. Appl. Energy 2019, 233, 312–320. [Google Scholar] [CrossRef]
- Song, H.C.; Maurya, D.; Chun, J.; Zhou, Y.; Song, M.E.; Gray, D.; Yamoah, N.K.; Kumar, D.; McDannald, A.; Jain, M.; et al. Modulated Magneto-Thermal Response of La0.85Sr0.15MnO3 and (Ni0.6Cu0.2Zn0.2)Fe2O4 Composites for Thermal Energy Harvesters. Energy Harvest. Syst. 2017, 4, 57–65. [Google Scholar] [CrossRef]
- Waske, A.; Dzekan, D.; Sellschopp, K.; Berger, D.; Stork, A.; Nielsch, K.; Fähler, S. Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology. Nat. Energy 2019, 4, 68–74. [Google Scholar] [CrossRef]
- Vokoun, D.; Beleggia, M.; Heller, L.; Sittner, P. Magnetostatic interactions and forces between cylindrical permanent magnets. J. Magn. Magn. Mater. 2009, 321, 3758–3763. [Google Scholar] [CrossRef]
- Timoshenko, S. Analysis of bi-metal thermostats. J. Opt. Soc. Am. Rev. Sci. Instrum. 1925, 11, 233–255. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, W.; Lu, Y.; Cai, K.; Li, Y.; Wang, Z.; Wu, M.; Huang, C.; He, J. High Power Factor Ag/Ag2Se Composite Films for Flexible Thermoelectric Generators. ACS Appl. Mater. Interfaces 2021. [Google Scholar] [CrossRef] [PubMed]
Materials | Thermal Conductivity W/(m·K) | Emissivity |
---|---|---|
Bimetal | 10.9 | 0.25 |
Graphite sheet | 1200 | 0.85 |
Copper foil | 400 | 0.3 |
Gallium-based alloy | 120 | 0.5 |
Material Properties | Parameters |
---|---|
Bimetallic cantilever material | Mn75Ni15Cu10 Ni36 |
Generation cantilever material | beryllium bronze |
Magnet material | samarium cobalt |
Maximum working temperature of the magnet | 350 °C |
Bimetallic cantilever thickness | 0.1 mm |
Bimetallic cantilever length | 47 mm |
Bimetallic cantilever width | 10 mm |
Generation cantilever thickness | 0.1 mm |
Generation cantilever length | 18 mm |
Generation cantilever width | 10 mm |
Magnet length | 10 mm |
Magnet width | 2 mm |
Magnet height | 3 mm |
PZT thickness | 0.06 mm |
PZT length | 6 mm |
PZT width | 10 mm |
Distance between the two cantilevers | 2.5 mm |
Graphite sheet thickness | 0.07 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, R.; Wang, N.; He, Q.; Wang, J.; Li, X. An Energy Harvester with Temperature Threshold Triggered Cycling Generation for Thermal Event Autonomous Monitoring. Micromachines 2021, 12, 425. https://doi.org/10.3390/mi12040425
Han R, Wang N, He Q, Wang J, Li X. An Energy Harvester with Temperature Threshold Triggered Cycling Generation for Thermal Event Autonomous Monitoring. Micromachines. 2021; 12(4):425. https://doi.org/10.3390/mi12040425
Chicago/Turabian StyleHan, Ruofeng, Nianying Wang, Qisheng He, Jiachou Wang, and Xinxin Li. 2021. "An Energy Harvester with Temperature Threshold Triggered Cycling Generation for Thermal Event Autonomous Monitoring" Micromachines 12, no. 4: 425. https://doi.org/10.3390/mi12040425
APA StyleHan, R., Wang, N., He, Q., Wang, J., & Li, X. (2021). An Energy Harvester with Temperature Threshold Triggered Cycling Generation for Thermal Event Autonomous Monitoring. Micromachines, 12(4), 425. https://doi.org/10.3390/mi12040425