Damage Inside Borosilicate Glass by a Single Picosecond Laser Pulse
Abstract
:1. Introduction
2. Experiments
3. Modeling
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MPI | multiphoton ionization |
electrical field envelop | |
carrier wave frequency | |
c | speed of light in air |
beam radius | |
beam waist | |
Rayleigh length | |
FWHM pulse duration | |
k | wavenumber |
f | beam curvature |
nonlinear refractive index | |
critical power for self focusing | |
cross section for inverse bremsstrahlung process | |
electron collision time | |
critical plasma density | |
band gap | |
Keldysh parameter | |
photon ionization rate | |
cross section for multiphoton ionization | |
avalanche ionization coefficient | |
background atom density | |
electron recombination time |
References
- Penilla, E.H.; Devia-Cruz, L.F.; Wieg, A.T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J.E. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808. [Google Scholar] [CrossRef]
- Fletcher, L.B.; Witcher, J.J.; Troy, N.; Reis, S.T.; Brow, R.K.; Krol, D.M. Direct femtosecond laser waveguide writing inside zinc phosphate glass. Opt. Express 2011, 19, 7929–7936. [Google Scholar] [CrossRef] [Green Version]
- Osellame, R.; Taccheo, S.; Marangoni, M.; Ramponi, R.; Laporta, P.; Polli, D.; Silvestri, S.D.; Cerullo, G. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 2003, 20, 1559–1567. [Google Scholar] [CrossRef] [Green Version]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Sudrie, L.; Couairon, A.; Franco, M.; Lamouroux, B.; Prade, B.; Tzortzakis, S.; Mysyrowicz, A. Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica. Phys. Rev. Lett. 2002, 89, 186601. [Google Scholar] [CrossRef] [Green Version]
- Gamaly, E.G.; Juodkazis, S.; Nishimura, K.; Misawa, H.; Luther-Davies, B.; Hallo, L.; Nicolai, P.; Tikhonchuk, V.T. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation. Phys. Rev. B 2006, 73, 214101. [Google Scholar] [CrossRef]
- Sun, M.; Eppelt, U.; Schulz, W.; Zhu, J. Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates. Opt. Mater. Express 2013, 3, 1716–1726. [Google Scholar] [CrossRef]
- Glezer, E.N.; Mazur, E. Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 1997, 71, 882–884. [Google Scholar] [CrossRef]
- Vailionis, A.; Gamaly, E.G.; Mizeikis, V.; Yang, W.; Rode, A.V.; Juodkazis, S. Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nat. Comm. 2011, 2, 445. [Google Scholar] [CrossRef] [Green Version]
- Bressel, L.; de Ligny, D.; Gamaly, E.G.; Rode, A.V.; Juodkazis, S. Observation of O2 inside voids formed in GeO2 glass by tightly-focused fs-laser pulses. Opt. Mater. Express 2011, 1, 1150–1158. [Google Scholar] [CrossRef]
- Juodkazis, S.; Misawa, H.; Hashimoto, T.; Gamaly, E.G.; Luther-Davies, B. Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids. Appl. Phys. Lett. 2006, 88, 201909. [Google Scholar] [CrossRef]
- Sakakura, M.; Shimizu, M.; Shimotsuma, Y.; Miura, K.; Hirao, K. Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses. Appl. Phys. Lett. 2008, 93, 231112. [Google Scholar] [CrossRef] [Green Version]
- Eaton, S.M.; Zhang, H.; Ng, M.L.; Li, J.; Chen, W.J.; Ho, S.; Herman, P.R. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express 2008, 16, 9443–9458. [Google Scholar] [CrossRef]
- Miyamoto, I.; Cvecek, K.; Schmidt, M. Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses. Opt. Express 2011, 19, 10714–10727. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, I.; Cvecek, K.; Okamoto, Y.; Schmidt, M.; Helvajian, H. Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses. Opt. Express 2011, 19, 22961–22973. [Google Scholar] [CrossRef]
- Chen, H.; Deng, L.; Duan, J.; Zeng, X. Picosecond laser welding of glasses with a large gap by a rapid oscillating scan. Opt. Lett. 2019, 44, 2570–2573. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Carter, R.M.; Thomson, R.R.; Hand, D.P. Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding. Opt. Express 2015, 23, 18645–18657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvecek, K.; Odato, R.; Dehmel, S.; Miyamoto, I.; Schmidt, M. Gap bridging in joining of glass using ultra short laser pulses. Opt. Express 2015, 23, 5681–5693. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, I.; Cvecek, K.; Schmidt, M. Crack-free conditions in welding of glass by ultrashort laser pulse. Opt. Express 2013, 21, 14291–14302. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Polynkin, P. Micromachining of borosilicate glass surfaces using femtosecond higher-order Bessel beams. J. Opt. Soc. Am. B 2014, 31, C48–C52. [Google Scholar] [CrossRef]
- Mlejnek, M.; Wright, E.M.; Moloney, J.V. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 1998, 23, 382–384. [Google Scholar] [CrossRef]
- Kolesik, M.; Wright, E.M.; Moloney, J.V. Dynamic Nonlinear X Waves for Femtosecond Pulse Propagation in Water. Phys. Rev. Lett. 2004, 92, 253901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keldysh, L.V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 1965, 20, 1307. [Google Scholar]
- Audebert, P.; Daguzan, P.; Dos Santos, A.; Gauthier, J.C.; Geindre, J.P.; Guizard, S.; Hamoniaux, G.; Krastev, K.; Martin, P.; Petite, G.; et al. Space-Time Observation of an Electron Gas in SiO2. Phys. Rev. Lett. 1994, 73, 1990–1993. [Google Scholar] [CrossRef]
- Juodkazis, S.; Nishimura, K.; Tanaka, S.; Misawa, H.; Gamaly, E.G.; Luther-Davies, B.; Hallo, L.; Nicolai, P.; Tikhonchuk, V.T. Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures. Phys. Rev. Lett. 2006, 96, 166101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzortzakis, S.; Sudrie, L.; Franco, M.; Prade, B.; Mysyrowicz, A.; Couairon, A.; Bergé, L. Self-Guided Propagation of Ultrashort IR Laser Pulses in Fused Silica. Phys. Rev. Lett. 2001, 87, 213902. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Pieterse, J.-W.; Liang, R. Damage Inside Borosilicate Glass by a Single Picosecond Laser Pulse. Micromachines 2021, 12, 553. https://doi.org/10.3390/mi12050553
Cheng W, Pieterse J-W, Liang R. Damage Inside Borosilicate Glass by a Single Picosecond Laser Pulse. Micromachines. 2021; 12(5):553. https://doi.org/10.3390/mi12050553
Chicago/Turabian StyleCheng, Weibo, Jan-Willem Pieterse, and Rongguang Liang. 2021. "Damage Inside Borosilicate Glass by a Single Picosecond Laser Pulse" Micromachines 12, no. 5: 553. https://doi.org/10.3390/mi12050553
APA StyleCheng, W., Pieterse, J. -W., & Liang, R. (2021). Damage Inside Borosilicate Glass by a Single Picosecond Laser Pulse. Micromachines, 12(5), 553. https://doi.org/10.3390/mi12050553