Femtosecond Laser Engraving of Deep Patterns in Steel and Sapphire
Abstract
:1. Introduction
2. Setup and Methodology
3. Experimental
3.1. Evolution of Depth, Roughness, Taper Angle with Scan Number
3.2. Engraving Quality Evolution (Depth > 100 m)
3.2.1. Steel
3.2.2. Sapphire
3.3. Specific Logo Engraving
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hennig, G.; Selbmann, K.H.; Brockelt, A. Laser engraving in gravure industry. In Workshop on Laser Applications in Europe; Gries, W., Pearsall, T.P., Eds.; SPIE: Bellingham, EA, USA, 2005. [Google Scholar] [CrossRef]
- Agalianos, F.; Patelis, S.; Kyratsis, P.; Maravelakis, E.; Vasarmidis, E.; Antoniadis, A. Industrial Applications of Laser Engraving: Influence of The Process Parameters on Machined Surface Quality. World Acad. Sci. Eng. Technol. 2011, 59, 1242–1245. [Google Scholar] [CrossRef]
- Dusser, B.; Sagan, Z.; Foucou, A.; Jourlin, M.; Audouard, E. News applications in authentication and traceability using ultrafast laser marking. In Laser Applications in Microelectronic and Optoelectronic Manufacturing VII; Meunier, M., Holmes, A.S., Niino, H., Gu, B., Eds.; SPIE: Bellingham, WA, USA, 2009. [Google Scholar] [CrossRef]
- Mehta, H.S.; Thakkar, J.J. A Review on Parametric Optimization of Laser Engraving using Fiber Laser on Steel. Int. J. Sci. Res. Dev. 2015, 3, 736–738. [Google Scholar]
- Ancona, A.; Röser, F.; Rademaker, K.; Limpert, J.; Nolte, S.; Tünnermann, A. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Opt. Express 2008, 16, 8958. [Google Scholar] [CrossRef]
- Ancona, A.; Döring, S.; Jauregui, C.; Röser, F.; Limpert, J.; Nolte, S.; Tünnermann, A. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Opt. Lett. 2009, 34, 3304. [Google Scholar] [CrossRef]
- Weber, R.; Graf, T.; Berger, P.; Onuseit, V.; Wiedenmann, M.; Freitag, C.; Feuer, A. Heat accumulation during pulsed laser materials processing. Opt. Express 2014, 22, 11312. [Google Scholar] [CrossRef] [Green Version]
- Schille, J.; Schneider, L.; Lickschat, P.; Loeschner, U.; Ebert, R.; Exner, H. High-pulse repetition frequency ultrashort pulse laser processing of copper. J. Laser Appl. 2015, 27, S28007. [Google Scholar] [CrossRef]
- Bauer, F.; Michalowski, A.; Kiedrowski, T.; Nolte, S. Heat accumulation in ultra-short pulsed scanning laser ablation of metals. Opt. Express 2015, 23, 1035. [Google Scholar] [CrossRef] [PubMed]
- Lehr, J.; de Marchi, F.; Matus, L.; MacLeod, J.; Rosei, F.; Kietzig, A.M. The influence of the gas environment on morphology and chemical composition of surfaces micro-machined with a femtosecond laser. Appl. Surf. Sci. 2014, 320, 455–465. [Google Scholar] [CrossRef]
- Ahmmed, K.T.; Ling, E.J.Y.; Servio, P.; Kietzig, A.M. Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Opt. Lasers Eng. 2015, 66, 258–268. [Google Scholar] [CrossRef]
- Garcia-Lechuga, M.; Utéza, O.; Sanner, N.; Grojo, D. Evidencing the nonlinearity independence of resolution in femtosecond laser ablation. Opt. Lett. 2020, 45, 952. [Google Scholar] [CrossRef]
- Žemaitis, A.; Gaidys, M.; Brikas, M.; Gečys, P.; Račiukaitis, G.; Gedvilas, M. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: Experiment and model. Sci. Rep. 2018, 8, 17376. [Google Scholar] [CrossRef] [PubMed]
- Lott, G.; Falletto, N.; Devilder, P.J.; Kling, R. Optimizing the processing of sapphire with ultrashort laser pulses. J. Laser Appl. 2016, 28, 022206. [Google Scholar] [CrossRef]
- Audouard, E.; Lopez, J.; Ancelot, B.; Gaudfrin, K.; Kling, R.; Mottay, E. Optimization of surface engraving quality with ultrafast lasers. J. Laser Appl. 2017, 29, 022210. [Google Scholar] [CrossRef]
- Kasman, Ş. Impact of parameters on the process response: A Taguchi orthogonal analysis for laser engraving. Measurement 2013, 46, 2577–2584. [Google Scholar] [CrossRef]
- Faucon, M.; Mincuzzi, G.; Morin, F.; Hönninger, C.; Mottay, E.; Kling, R. Metal deep engraving with high average power femtosecond lasers. In Laser-Based Micro-and Nanoprocessing IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9351, p. 93510Q. [Google Scholar] [CrossRef]
- Eberle, G.; Schmidt, M.; Pude, F.; Wegener, K. Laser surface and subsurface modification of sapphire using femtosecond pulses. Appl. Surf. Sci. 2016, 378, 504–512. [Google Scholar] [CrossRef]
- Lopez, J.; Mincuzzi, G.; Devillard, R.; Zaouter, Y.; Hönninger, C.; Mottay, E.; Kling, R. Ablation efficiency of high average power ultrafast laser. J. Laser Appl. 2015, 27, S28008. [Google Scholar] [CrossRef]
- Sedao, X.; Lenci, M.; Rudenko, A.; Pascale-Hamri, A.; Colombier, J.P.; Mauclair, C. Additive and Substractive Surface Structuring by Femtosecond Laser Induced Material Ejection and Redistribution. Materials 2018, 11, 2456. [Google Scholar] [CrossRef] [Green Version]
- Sedao, X.; Lenci, M.; Rudenko, A.; Faure, N.; Pascale-Hamri, A.; Colombier, J.; Mauclair, C. Influence of pulse repetition rate on morphology and material removal rate of ultrafast laser ablated metallic surfaces. Opt. Lasers Eng. 2019, 116, 68–74. [Google Scholar] [CrossRef]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196. [Google Scholar] [CrossRef]
- Mannion, P.; Magee, J.; Coyne, E.; O’Connor, G.M. Ablation thresholds in ultrafast laser micromachining of common metals in air. In Opto-Ireland 2002: Optics and Photonics Technologies and Applications; Glynn, T.J., Ed.; SPIE: Bellingham, WA, USA, 2003. [Google Scholar] [CrossRef]
- Xia, B.; Jiang, L.; Li, X.; Yan, X.; Lu, Y. Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling. Opt. Express 2015, 23, 27853. [Google Scholar] [CrossRef]
- Liu, T.; Wei, H.; Wu, J.; Lu, J.; Zhang, Y. Modulation of crack formation inside single-crystal sapphire using ultrafast laser Bessel beams. Opt. Laser Technol. 2021, 136, 106778. [Google Scholar] [CrossRef]
Sapphire (m) | Steel (m) | ||||
---|---|---|---|---|---|
(m) | OL(%) | N | (m) | OL(%) | N |
3.2 | 90 | 1n | 4.2 | 90 | 1n |
4.53 | 86 | 2n | 5.94 | 86 | 2n |
6.4 | 80 | 4n | 8.4 | 80 | 4n |
7.84 | 75.5 | 6n | 10.25 | 75.5 | 6n |
12.6 | 70 | 9n |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallarés-Aldeiturriaga, D.; Claudel, P.; Granier, J.; Travers, J.; Guillermin, L.; Flaissier, M.-O.; d’Augeres, P.B.; Sedao, X. Femtosecond Laser Engraving of Deep Patterns in Steel and Sapphire. Micromachines 2021, 12, 804. https://doi.org/10.3390/mi12070804
Pallarés-Aldeiturriaga D, Claudel P, Granier J, Travers J, Guillermin L, Flaissier M-O, d’Augeres PB, Sedao X. Femtosecond Laser Engraving of Deep Patterns in Steel and Sapphire. Micromachines. 2021; 12(7):804. https://doi.org/10.3390/mi12070804
Chicago/Turabian StylePallarés-Aldeiturriaga, David, Pierre Claudel, Julien Granier, Julien Travers, Lionel Guillermin, Marc-Olivier Flaissier, Patrick Beaure d’Augeres, and Xxx Sedao. 2021. "Femtosecond Laser Engraving of Deep Patterns in Steel and Sapphire" Micromachines 12, no. 7: 804. https://doi.org/10.3390/mi12070804
APA StylePallarés-Aldeiturriaga, D., Claudel, P., Granier, J., Travers, J., Guillermin, L., Flaissier, M. -O., d’Augeres, P. B., & Sedao, X. (2021). Femtosecond Laser Engraving of Deep Patterns in Steel and Sapphire. Micromachines, 12(7), 804. https://doi.org/10.3390/mi12070804