Femtosecond Single Cycle Pulses Enhanced the Efficiency of High Order Harmonic Generation
Abstract
:1. Introduction
2. Theoretical and Computational Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popmintchev, T.; Chen, M.C.; Arpin, P.; Murnane, M.M.; Kapteyn, H.C. The Attosecond Nonlinear Optics of Bright coherent X-ray Generation. Nat. Photon. 2010, 4, 822–832. [Google Scholar] [CrossRef]
- Popmintchev, D.; Galloway, B.R.; Chen, M.C.; Dollar, F.; Mancuso, C.A.; Hankla, A.; Miaja-Avila, L.; O’Neil, G.; Shaw, J.M.; Fan, G.; et al. Near- and Extended-Edge X-Ray-Absorption Fine-Structure Spectroscopy Using Ultrafast Coherent High-Order Harmonic Supercontinua. Phys. Rev. Lett. 2018, 120, 093002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corkum, P.; Krausz, F. Attosecond Science. Nat. Phys. 2007, 3, 381–387. [Google Scholar] [CrossRef]
- Krausz, F.; Ivanov, M. Attosecond Physics. Rev. Mod. Phys. 2009, 81, 163–234. [Google Scholar] [CrossRef] [Green Version]
- Itatani, J.; Levesque, J.; Zeidler, D.; Niikura, H.; Pépin, H.; Kieffer, J.C.; Corkum, P.B.; Villeneuve, D.M. Tomographic Imaging of Molecular Orbitals. Nature 2004, 432, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.D.; Le, A.T.; Chen, Z.; Morishita, T.; Lucchese, R. Strong-Field Rescattering physics—Self-imaging of a molecule by its own electrons. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 122001. [Google Scholar] [CrossRef]
- Peng, P.; Marceau, C.; Villeneuve, D.M. Attosecond imaging of molecules using high harmonic spectroscopy. Nat. Rev. Phys. 2019, 1, 144–155. [Google Scholar] [CrossRef]
- Leeuwenburgh, J.; Cooper, B.; Averbukh, V.; Marangos, J.P.; Ivanov, M. High-Order Harmonic Generation Spectroscopy of Correlation-Driven Electron Hole Dynamics. Phys. Rev. Lett. 2013, 111, 123002. [Google Scholar] [CrossRef]
- Silva, R.; Jiménez-Galán, Á.; Amorim, B.; Smirnova, O.; Ivanov, M. Topological Strong-Field Physics on Sub-Laser-Cycle Timescale. Nat. Photon. 2019, 13, 849–854. [Google Scholar] [CrossRef] [Green Version]
- Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 1993, 71, 1994–1997. [Google Scholar] [CrossRef] [Green Version]
- Lara-Astiaso, M.; Silva, R.E.F.; Gubaydullin, A.; Rivière, P.; Meier, C.; Martín, F. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses. Phys. Rev. Lett. 2016, 117, 093003. [Google Scholar] [CrossRef] [Green Version]
- Carrera, J.J.; Chu, S.I. Extension of High-Order Harmonic Generation Cutoff via Coherent Control of Intense Few-Cycle Chirped Laser Pulses. Phys. Rev. A 2007, 75, 033807. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Frolov, M.V.; Pi, L.W.; Starace, A.F. Enhancing high-order harmonic generation by sculpting waveforms with chirp. Phys. Rev. A 2018, 97, 053414. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jin, J.; Kim, Y.J.; Park, I.Y.; Kim, Y.; Kim, S.W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008, 453, 757–760. [Google Scholar] [CrossRef]
- Ciappina, M.F.; Biegert, J.; Quidant, R.; Lewenstein, M. High-order-harmonic generation from inhomogeneous fields. Phys. Rev. A 2012, 85, 033828. [Google Scholar] [CrossRef] [Green Version]
- Bao, M.Q.; Starace, A.F. Static-electric-field effects on high harmonic generation. Phys. Rev. A 1996, 53, R3723–R3726. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Li, X.; Fu, P. Polarization effects in high-harmonic generation in the presence of static-electric field. Phys. Rev. A 1999, 59, 2894–2902. [Google Scholar] [CrossRef]
- Borca, B.; Flegel, A.V.; Frolov, M.V.; Manakov, N.L.; Milošević, D.B.; Starace, A.F. Static-Electric-Field-Induced Polarization Effects in Harmonic Generation. Phys. Rev. Lett. 2000, 85, 732–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odžak, S.; Milošević, D.B. High-order harmonic generation in the presence of a static electric field. Phys. Rev. A 2005, 72, 033407. [Google Scholar] [CrossRef]
- Schiessl, K.; Persson, E.; Scrinzi, A.; Burgdörfer, J. Enhancement of high-order harmonic generation by a two-color field: Influence of propagation effects. Phys. Rev. A 2006, 74, 053412. [Google Scholar] [CrossRef]
- Peng, D.; Pi, L.W.; Frolov, M.V.; Starace, A.F. Enhancing high-order-harmonic generation by time delays between two-color, few-cycle pulses. Phys. Rev. A 2017, 95, 033413. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, A.; Moiseyev, N. Amplification of high-order harmonics using weak perturbative high-frequency radiation. Phys. Rev. A 2008, 77, 010102. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, A. Generation of higher-order harmonics upon the addition of high-frequency XUV radiation to IR radiation: Generalization of the three-step model. Phys. Rev. A 2008, 78, 053413. [Google Scholar] [CrossRef]
- Sarantseva, T.S.; Frolov, M.V.; Manakov, N.L.; Silaev, A.A.; Vvedenskii, N.V.; Starace, A.F. XUV-assisted high-order-harmonic-generation spectroscopy. Phys. Rev. A 2018, 98, 063433. [Google Scholar] [CrossRef] [Green Version]
- Sarantseva, T.S.; Frolov, M.V.; Manakov, N.L.; Silaev, A.A.; Romanov, A.A.; Vvedenskii, N.V.; Starace, A.F. Attosecond-pulse metrology based on high-order harmonic generation. Phys. Rev. A 2020, 101, 013402. [Google Scholar] [CrossRef]
- Popruzhenko, S.V.; Zaretsky, D.F.; Becker, W. High-order harmonic generation by an intense infrared laser pulse in the presence of a weak UV pulse. Phys. Rev. A 2010, 81, 063417. [Google Scholar] [CrossRef]
- Miller, M.R.; Hernández-García, C.; Jaroń-Becker, A.; Becker, A. Targeting multiple rescatterings through VUV-controlled high-order-harmonic generation. Phys. Rev. A 2014, 90, 053409. [Google Scholar] [CrossRef] [Green Version]
- Kovács, K.; Balogh, E.; Hebling, J.; Toşa, V.; Varjú, K. Quasi-Phase-Matching High-Harmonic Radiation Using Chirped THz Pulses. Phys. Rev. Lett. 2012, 108, 193903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Jones, R.R. Ionization of Excited Atoms by Intense Single-Cycle THz Pulses. Phys. Rev. Lett. 2014, 112, 143006. [Google Scholar] [CrossRef]
- Yang, B.C.; Robicheaux, F. Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse. Phys. Rev. A 2014, 90, 063413. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.C.; Robicheaux, F. Field ionization of Rydberg atoms in a single-cycle pulse. Phys. Rev. A 2015, 91, 043407. [Google Scholar] [CrossRef] [Green Version]
- Agueny, H.; Chovancova, M.; Hansen, J.P.; Kocbach, L. Scaling properties of field ionization of Rydberg atoms in single-cycle THz pulses: 1D considerations. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 245002. [Google Scholar] [CrossRef]
- Chovancova, M.; Agueny, H.; Rørstad, J.J.; Hansen, J.P. Classical and quantum-mechanical scaling of ionization from excited hydrogen atoms in single-cycle THz pulses. Phys. Rev. A 2017, 96, 023423. [Google Scholar] [CrossRef] [Green Version]
- Chovancova, M.; Agueny, H.; Førre, M.; Kocbach, L.; Hansen, J.P. Spatial transport of electron quantum states with strong attosecond pulses. J. Opt. 2017, 19, 114008. [Google Scholar] [CrossRef]
- Agueny, H. Coherent electron displacement for quantum information processing using attosecond single-cycle pulses. Sci. Rep. 2020, 10, 21869. [Google Scholar] [CrossRef]
- Krauss, G.; Lohss, S.; Hanke, T.; Sell, A.; Eggert, S.; Huber, R.; Leitenstorfer, A. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photon. 2010, 4, 33–36. [Google Scholar] [CrossRef]
- Balciunas, T.; Fourcade-Dutin, C.; Fan, G.; Witting, T.; Voronin, A.A.; Zheltikov, A.M.; Gerome, F.; Paulus, G.G.; Baltuska, A.; Benabid, F. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Common. 2015, 6, 6117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Z.; Pai, C.H.; Hua, J.; Zhang, C.; Wu, Y.; Wan, Y.; Li, F.; Zhang, J.; Cheng, Z.; Su, Q.; et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. Nat. Photon. 2018, 12, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Nomura, Y.; Shirai, H.; Ishii, K.; Tsurumachi, N.; Voronin, A.A.; Zheltikov, A.M.; Fuji, T. Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases. Opt. Express 2012, 20, 24741–24747. [Google Scholar] [CrossRef] [PubMed]
- Krogen, P.; Suchowski, H.; Liang, H.; Flemens, N.; Hong, K.H.; Kärtner, F.X.; Moses, J. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat. Photon. 2017, 11, 222–226. [Google Scholar] [CrossRef]
- Liang, H.; Krogen, P.; Wang, Z.; Park, H.; Kroh, T.; Zawilski, K.; Schunemann, P.; Moses, J.; DiMauro, L.F.; Kartner, F.X.; et al. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nat. Commun. 2017, 8, 141. [Google Scholar] [CrossRef]
- Chen, B.H.; Wittmann, E.; Morimoto, Y.; Baum, P.; Riedle, E. Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS2. Opt. Express 2019, 27, 21306–21318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiele, I.; Siminos, E.; Fülöp, T. Electron Beam Driven Generation of Frequency-Tunable Isolated Relativistic Subcycle Pulses. Phys. Rev. Lett. 2019, 122, 104803. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.L.; Chen, M.; Weng, S.M.; McKenna, P.; Sheng, Z.M.; Zhang, J. Single-Cycle Terawatt Twisted-Light Pulses at Midinfrared Wavelengths above 10 µm. Phys. Rev. Appl. 2019, 12, 054024. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.I.; Park, S.B.; Mun, J.; Cho, W.; Nam, C.H.; Kim, K.T. Generation of a single-cycle pulse using a two-stage compressor and its temporal characterization using a tunnelling ionization method. Sci. Rep. 2019, 9, 1613. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.L.; Weng, S.M.; Chen, M.; Sheng, Z.M.; Zhang, J. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas. Light Sci. Appl. 2020, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Jones, R.R. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nat. Commun. 2016, 7, 13405. [Google Scholar] [CrossRef] [Green Version]
- Rybka, T.; Ludwig, M.; Schmalz, M.F.; Knittel, V.; Brida, D.; Leitenstorfer, A. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon. 2016, 10, 667. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.T.; Luu, T.T.; Moulet, A.; Raskazovskaya, O.; Zhokhov, P.; Garg, M.; Karpowicz, N.; Zheltikov, A.; Pervak, V.; Krausz, F.; et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 2016, 530, 66–70. [Google Scholar] [CrossRef]
- Ludwig, M.; Aguirregabiria, G.; Ritzkowsky, F.; Rybka, T.; Marinica, D.C.; Aizpurua, J.; Borisov, A.G.; Leitenstorfer, A.; Brida, D. Sub-femtosecond electron transport in a nanoscale gap. Nat. Phys. 2020, 16, 341–345. [Google Scholar] [CrossRef]
- Morimoto, Y.; Baum, P. Single-Cycle Optical Control of Beam Electrons. Phys. Rev. Lett. 2020, 125, 193202. [Google Scholar] [CrossRef]
- Krausz, F.; Stockman, M.I. Attosecond metrology: From electron capture to future signal processing. Nat. Photon. 2014, 8, 205–213. [Google Scholar] [CrossRef]
- Zewail, A.H. Laser Femtochemistry. Science 1988, 242, 1645–1653. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.; Brumer, P. Coherent Control of Atomic, Molecular, and Electronic Processes. In Advances In Atomic, Molecular, and Optical Physics; Academic Press: Cambridge, MA, USA, 2000; Volume 42, pp. 287–345. [Google Scholar] [CrossRef]
- Zewail, A.H. Four-Dimensional Electron Microscopy. Science 2010, 328, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Bandrauk, A.D.; Chelkowski, S.; Diestler, D.J.; Manz, J.; Yuan, K.J. Quantum simulation of high-order harmonic spectra of the hydrogen atom. Phys. Rev. A 2009, 79, 023403. [Google Scholar] [CrossRef] [Green Version]
- Agueny, H.; Hansen, J.P. High-order photoelectron holography in the midinfrared-wavelength regime. Phys. Rev. A 2018, 98, 023414. [Google Scholar] [CrossRef] [Green Version]
- Agueny, H. Quantum control and characterization of ultrafast ionization with orthogonal two-color laser pulses. Sci. Rep. 2020, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Antoine, P.; Piraux, B.; Maquet, A. Time profile of harmonics generated by a single atom in a strong electromagnetic field. Phys. Rev. A 1995, 51, R1750–R1753. [Google Scholar] [CrossRef] [PubMed]
- de Bohan, A.; Antoine, P.; Milošević, D.B.; Piraux, B. Phase-Dependent Harmonic Emission with Ultrashort Laser Pulses. Phys. Rev. Lett. 1998, 81, 1837–1840. [Google Scholar] [CrossRef]
- Agueny, H.; Taoutioui, A.; Adnani, Y.; Makhoute, A. Manipulating dynamical Rabi-splitting with two-color laser pulses. Opt. Express 2019, 27, 21020–21028. [Google Scholar] [CrossRef]
- Brida, D.; Manzoni, C.; Cirmi, G.; Marangoni, M.; Bonora, S.; Villoresi, P.; Silvestri, S.D.; Cerullo, G. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. J. Opt. 2009, 12, 013001. [Google Scholar] [CrossRef]
- Ma, F.; Liu, H.; Huang, N.; Sun, Q. Generation of single-cycle mid-infrared pulses via coherent synthesis. Opt. Express 2012, 20, 28455–28464. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.Y.; Kim, S.H.; Kim, G.H.; Yee, K.J. Visible-pulse generation in gain crystal of near-infrared femtosecond optical parametric oscillator. Opt. Express 2015, 23, 25620–25627. [Google Scholar] [CrossRef] [PubMed]
- Vampa, G.; Hammond, T.J.; Thiré, N.; Schmidt, B.E.; Légaré, F.; McDonald, C.R.; Brabec, T.; Corkum, P.B. Linking high harmonics from gases and solids. Nature 2015, 522, 462–464. [Google Scholar] [CrossRef] [PubMed]
- Vampa, G.; Hammond, T.J.; Thiré, N.; Schmidt, B.E.; Légaré, F.; McDonald, C.R.; Brabec, T.; Klug, D.D.; Corkum, P.B. All-Optical Reconstruction of Crystal Band Structure. Phys. Rev. Lett. 2015, 115, 193603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osika, E.N.; Chacón, A.; Ortmann, L.; Suárez, N.; Pérez-Hernández, J.A.; Szafran, B.; Ciappina, M.F.; Sols, F.; Landsman, A.S.; Lewenstein, M. Wannier-Bloch Approach to Localization in High-Harmonics Generation in Solids. Phys. Rev. X 2017, 7, 021017. [Google Scholar] [CrossRef] [Green Version]
- Agueny, H. Tuning the electronic band structure of metal surfaces for enhancing high-order harmonic generation. arXiv 2021, arXiv:2103.12174. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taoutioui, A.; Agueny, H. Femtosecond Single Cycle Pulses Enhanced the Efficiency of High Order Harmonic Generation. Micromachines 2021, 12, 610. https://doi.org/10.3390/mi12060610
Taoutioui A, Agueny H. Femtosecond Single Cycle Pulses Enhanced the Efficiency of High Order Harmonic Generation. Micromachines. 2021; 12(6):610. https://doi.org/10.3390/mi12060610
Chicago/Turabian StyleTaoutioui, Abdelmalek, and Hicham Agueny. 2021. "Femtosecond Single Cycle Pulses Enhanced the Efficiency of High Order Harmonic Generation" Micromachines 12, no. 6: 610. https://doi.org/10.3390/mi12060610
APA StyleTaoutioui, A., & Agueny, H. (2021). Femtosecond Single Cycle Pulses Enhanced the Efficiency of High Order Harmonic Generation. Micromachines, 12(6), 610. https://doi.org/10.3390/mi12060610