Enhanced Microsphere-Assisted Picosecond Laser Processing for Nanohole Fabrication on Silicon via Thin Gold Coating
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Influence of Gold Film on the Surface Morphology of Nanohole Arrays
3.2. Influence of Gold Film on the Size and Internal Morphology of Nanohole Arrays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, A.; Guo, Z. Efficient light trapping in tapered silicon nanohole arrays. Optik 2016, 127, 2861–2865. [Google Scholar] [CrossRef]
- Deng, C.; Tan, X.; Jiang, L.; Tu, Y.; Ye, M.; Yi, Y. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications. Opt. Commun. 2018, 407, 199–203. [Google Scholar] [CrossRef]
- Wang, F.; Yu, H.; Li, J.; Sun, X.; Wang, X.; Zheng, H. Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. Opt. Lett. 2010, 35, 40–42. [Google Scholar] [CrossRef]
- Du, Q.G.; Kam, C.H.; Demir, H.V.; Yu, H.Y.; Sun, X.W. Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Opt. Lett. 2011, 36, 1713. [Google Scholar] [CrossRef]
- Han, S.E.; Chen, G. Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics. Nano Lett. 2010, 10, 1012–1015. [Google Scholar] [CrossRef]
- Hussain, S.; Pozzato, A.; Tormen, M.; Zannier, V.; Biasiol, G. III–V site-controlled quantum dots on Si patterned by nanoimprint lithography. J. Cryst. Growth 2016, 437, 59–62. [Google Scholar] [CrossRef]
- Lee, J.; Cheon, S.; Choi, J.; Choi, D.; Jung, J.; Jeon, S.; Lee, E.; Jeong, J. Shape-controlled fabrication of nanopatterned samarium-doped cerium oxide thin films using ultraviolet nanoimprint lithography. Thin Solid Films 2017, 636, 552–557. [Google Scholar] [CrossRef]
- Morin, A.; Lucot, D.; Ouerghi, A.; Patriarche, G.; Bourhis, E.; Madouri, A.; Ulysse, C.; Pelta, J.; Auvray, L.; Jede, R.; et al. FIB carving of nanopores into suspended graphene films. Microelectron. Eng. 2012, 97, 311–316. [Google Scholar] [CrossRef]
- Spinney, P.S.; Howitt, D.G.; Smith, R.L.; Collins, S.D. Nanopore formation by low-energy focused electron beam machining. Nanotechnology 2010, 21, 375301. [Google Scholar] [CrossRef]
- Xue, T.; Xu, Q.; Li, Y.; Qi, H.; Wang, Z.; Yang, Y.; Ren, T. A method of controlling the hole size of nanopores array on anodic aluminum oxide. Mater. Lett. 2018, 215, 183–186. [Google Scholar] [CrossRef]
- Chimmalgi, A.L.; Choi, T.Y.L.; Grigoropoulos, C.P.; Komvopoulos, K. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 2003, 82, 1146–1148. [Google Scholar] [CrossRef]
- Nedyalkov, N.N.; Miyanishi, T.; Obara, M. Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse. Appl. Surf. Sci. 2007, 253, 6558–6562. [Google Scholar] [CrossRef]
- Sakai, T.; Nedyalkov, N.; Obara, M. Positive and negative nanohole-fabrication on glass surface by femtosecond laser with template of polystyrene particle array. J. Phys. D Appl. Phys. 2007, 40, 2102–2107. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Y.; Li, Y.; Hong, M. Microsphere enhanced optical imaging and patterning: From physics to applications. Appl. Phys. Rev. 2019, 6, 021304. [Google Scholar] [CrossRef]
- Li, Y.; Hong, M. Parallel Laser Micro/Nano-Processing for Functional Device Fabrication. Laser Photonics Rev. 2020, 14, 1900062. [Google Scholar] [CrossRef]
- Münzer, H.J.; Mosbacher, M.; Bertsch, M.; Zimmermann, J.; Leiderer, P.; Boneberg, J. Local field enhancement effects for nanostructuring of surfaces. J. Microsc. 2001, 202, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, J.; Ahmed, R.; Garcia-Giron, A.; Penchev, P.; Butt, H.; Delléa, O.; Sikosana, M.; Helbig, R.; Werner, C.; Dimov, S. Subwavelength Direct Laser Nanopatterning Via Microparticle Arrays for Functionalizing Metallic Surfaces. J. Micro Nano-Manuf. 2019, 7, 010901. [Google Scholar] [CrossRef]
- McCloskey, D.; Rakovich, Y.P.; Donegan, J.F. Controlling the Properties of Photonic Jets. In Proceedings of the 2010 12th International Conference on Transparent Optical Networks, Munich, Germany, 27 June–1 July 2010; pp. 1–3. [Google Scholar]
- Heifetz, A.; Kong, S.; Sahakian, A.V.; Taflove, A.; Backman, V. Photonic Nanojets. J. Comput. Theor. Nanosci. 2009, 6, 1979–1992. [Google Scholar] [CrossRef]
- Khan, A.; Wang, Z.; Sheikh, M.A.; Whitehead, D.J.; Li, L. Laser micro/nano patterning of hydrophobic surface by contact particle lens array. Appl. Surf. Sci. 2011, 258, 774–779. [Google Scholar] [CrossRef]
- Zhou, Y.; Hong, M.H.; Fuh, J.; Lu, L.; Luk Yanchuk, B.S.; Wang, Z.B.; Shi, L.P.; Chong, T.C. Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement. Appl. Phys. Lett. 2006, 88, 023110. [Google Scholar] [CrossRef]
- Miyanishi, T.; Sakai, T.; Nedyalkov, N.N.; Obara, M. Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation. Appl. Phys. A 2009, 96, 843–850. [Google Scholar] [CrossRef]
- Tanaka, Y.; Obara, G.; Zenidaka, A.; Terakawa, M.; Obara, M. Femtosecond laser near-field nanoablation patterning using Mie resonance high dielectric constant particle with small size parameter. Appl. Phys. Lett. 2010, 96, 261103. [Google Scholar] [CrossRef]
- Rybczynski, J.; Ebels, U.; Giersig, M. Large-scale, 2D arrays of magnetic nanoparticles. Colloid Surf. A-Physicochem. Eng. Asp. 2003, 219, 1–6. [Google Scholar] [CrossRef]
- Yasuyuki, T.; Shin-Ichi, S.; Koji, H.; Hiroshi, F.; Hiroshi, M. Photothermal Ablation of Polystyrene Film by 248 NM Excimer Laser Irradiation: A Mechanistic Study by Time-Resolved Measurements. Laser Chem. 1996, 16, 167–177. [Google Scholar]
- Huang, S.M.; Sun, Z.; Luk Yanchuk, B.S.; Hong, M.H.; Shi, L.P. Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon. Appl. Phys. Lett. 2005, 86, 161911. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, H.; Cheng, G.; Jiang, F.; Lu, J.; Xu, X. Improvement of ablation capacity of sapphire by gold film-assisted femtosecond laser processing. Opt. Lasers Eng. 2020, 128, 106007. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, X.; Roy, A.K. Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces. Phys. Rev. B 2012, 85, 205311. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Chen, J.K. Ultrafast solid–liquid–vapor phase change of a gold film induced by pico- to femtosecond lasers. Appl. Phys. A 2009, 95, 643–653. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Q.; Wei, X.; Zhang, P.; Lu, J.; Jiang, F.; Lu, X. Enhanced Microsphere-Assisted Picosecond Laser Processing for Nanohole Fabrication on Silicon via Thin Gold Coating. Micromachines 2021, 12, 611. https://doi.org/10.3390/mi12060611
Wen Q, Wei X, Zhang P, Lu J, Jiang F, Lu X. Enhanced Microsphere-Assisted Picosecond Laser Processing for Nanohole Fabrication on Silicon via Thin Gold Coating. Micromachines. 2021; 12(6):611. https://doi.org/10.3390/mi12060611
Chicago/Turabian StyleWen, Qiuling, Xinyu Wei, Pengcheng Zhang, Jing Lu, Feng Jiang, and Xizhao Lu. 2021. "Enhanced Microsphere-Assisted Picosecond Laser Processing for Nanohole Fabrication on Silicon via Thin Gold Coating" Micromachines 12, no. 6: 611. https://doi.org/10.3390/mi12060611
APA StyleWen, Q., Wei, X., Zhang, P., Lu, J., Jiang, F., & Lu, X. (2021). Enhanced Microsphere-Assisted Picosecond Laser Processing for Nanohole Fabrication on Silicon via Thin Gold Coating. Micromachines, 12(6), 611. https://doi.org/10.3390/mi12060611