Efficacy Estimation of Microbubble-Assisted Local Sonothrombolysis Using a Catheter with a Series of Miniature Transducers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subsection Preparation of Bovine Blood Clots
2.2. Ultrasound-Based Prototype Catheter and Experimental Platform
2.3. Test of Acoustic Characteristics
2.4. In Vitro Experiment Protocol
3. Results
3.1. Determination of Clot Preparation Protocol
3.2. Acoustic Characteristics of the Transducer
3.3. In Vitro Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Nisio, M.; van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. [Google Scholar] [CrossRef]
- Fowkes, F.J.I.; Price, J.F.; Fowkes, F.G.R. Incidence of diagnosed deep vein thrombosis in the general population: Systematic review. Eur. J. Vasc. Endovasc. Surg. 2003, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Næss, I.A.; Christiansen, S.C.; Romundstad, P.; Cannegieter, S.C.; Rosendaal, F.R.; Hammerstrøm, J. Incidence and mortality of venous thrombosis: A population-based study. J. Thromb. Haemost. 2007, 5, 692–699. [Google Scholar] [CrossRef]
- Cushman, M.; Tsai, A.W.; White, R.H.; Heckbert, S.R.; Rosamond, W.D.; Enright, P.; Folsom, A.R. Deep vein thrombosis and pulmonary embolism in two cohorts: The longitudinal investigation of thromboembolism etiology. Am. J. Med. 2004, 117, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Galson, S.K. Prevention of Deep Vein Thrombosis and Pulmonary Embolism. Public Health Rep. 2008, 123, 420–421. [Google Scholar] [CrossRef] [Green Version]
- Kahn, S.R.; Comerota, A.J.; Cushman, M.; Evans, N.S.; Ginsberg, J.S.; Goldenberg, N.A.; Gupta, D.K.; Prandoni, P.; Vedantham, S.; Walsh, M.E.; et al. The Postthrombotic Syndrome: Evidence-Based Prevention, Diagnosis, and Treatment Strategies. Circulation 2014, 130, 1636–1661. [Google Scholar] [CrossRef] [Green Version]
- Kahn, S.R.; Ginsberg, J.S. Relationship between Deep Venous Thrombosis and the Postthrombotic Syndrome. Arch. Intern. Med. 2004, 164, 17–26. [Google Scholar] [CrossRef]
- Kahn, S.R.; Hirsch, A.; Shrier, I. Effect of postthrombotic syndrome on health-related quality of life after deep venous thrombosis. Arch. Intern. Med. 2002, 162, 1144–1148. [Google Scholar] [CrossRef] [Green Version]
- Kahn, S.R.; Shbaklo, H.; Lamping, D.L.; Holcroft, C.A.; Shrier, I.; Miron, M.J.; Roussin, A.; Desmarais, S.; Joyal, F.; Kassis, J.; et al. Determinants of health-related quality of life during the 2 years following deep vein thrombosis. J. Thromb. Haemost. 2008, 6, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Ashrani, A.A.; Heit, J.A. Incidence and cost burden of post-thrombotic syndrome. J. Thromb. Thrombolysis 2009, 28, 465–476. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, D.A.; Feliu, A.L.; Boccuzzi, S.J.; Lin, J. Economic burden of deep-vein thrombosis, pulmonary embolism, and post-thrombotic syndrome. Am. J. Health-Syst. Pharm. 2006, 63, S5–S15. [Google Scholar] [CrossRef] [PubMed]
- Kearon, C.; Akl, E.A.; Comerota, A.J.; Prandoni, P.; Bounameaux, H.; Goldhaber, S.Z.; Nelson, M.E.; Wells, P.S.; Gould, M.K.; Dentali, F.; et al. Antithrombotic Therapy for VTE Disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, e419S–e496S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearon, C.; Akl, E.A.; Ornelas, J.; Blaivas, A.; Jimenez, D.; Bounameaux, H.; Huisman, M.; King, C.S.; Morris, T.A.; Sood, N.; et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest 2016, 149, 315–352. [Google Scholar] [CrossRef]
- Van Dongen, C.J.J.; Prandoni, P.; Frulla, M.; Marchiori, A.; Prins, M.H.; Hutten, B.A. Relation between quality of anticoagulant treatment and the development of the postthrombotic syndrome. J. Thromb. Haemost. 2005, 3, 939–942. [Google Scholar] [CrossRef]
- Alhazmi, L.; Moustafa, A.; A Mangi, M.; Alamer, A.; Eltahawy, E. Efficacy and Safety of Catheter-directed Thrombolysis in Preventing Post-thrombotic Syndrome: A Meta-analysis. Cureus 2019, 11, e4152. [Google Scholar] [CrossRef] [Green Version]
- Mastoris, I.; Kokkinidis, D.G.; Bikakis, I.; Archontakis-Barakakis, P.; A Papanastasiou, C.; Jonnalagadda, A.K.; Schizas, D.; Bakoyiannis, C.; Palaiodimos, L.; Faillace, R.T. Catheter-directed thrombolysis vs. anticoagulation for the prevention and treatment of post-thrombotic syndrome in deep vein thrombosis: An updated systematic review and meta-analysis of randomized trials. Phlebology 2019, 34, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Zaghlool, D.S.; Franz, R.W.; Jenkins, J. EkoSonic Thrombolysis as a Therapeutic Adjunct in Venous Occlusive Disease. Int. J. Angiol. 2016, 25, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Engelberger, R.P.; Kucher, N. Ultrasound-assisted thrombolysis for acute pulmonary embolism: A systematic review. Eur. Heart J. 2014, 35, 758–764. [Google Scholar] [CrossRef]
- McCabe, J.M.; Huang, P.-H.; Riedl, L.; Eisenhauer, A.C.; Sobieszczyk, P. Usefulness and Safety of Ultrasound-Assisted Catheter-Directed Thrombolysis for Submassive Pulmonary Emboli. Am. J. Cardiol. 2015, 115, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Soltani, A. The Safety of Using High Frequency, Low Intensity Ultrasound to Enhance Thrombolysis. AIP Conf. Proc. 2006, 829, 233–237. [Google Scholar] [CrossRef]
- Dumantepe, M.; Tarhan, I.; Ozler, A. Treatment of Chronic Deep Vein Thrombosis Using Ultrasound Accelerated Catheter-directed Thrombolysis. Eur. J. Vasc. Endovasc. Surg. 2013, 46, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Kuliha, M.; Roubec, M.; Jonszta, T.; Krajča, J.; Czerny, D.; Krajina, A.; Langová, K.; Herzig, R.; Procházka, V.; Školoudík, D. Safety and Efficacy of Endovascular Sonolysis Using the EkoSonic Endovascular System in Patients with Acute Stroke. Am. J. Neuroradiol. 2013, 34, 1401–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, C.W.; Blinc, A.; Lee, S.; Cox, C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med. Biol. 1995, 21, 419–424. [Google Scholar] [CrossRef]
- Prokop, A.F.; Soltani, A.; Roy, R.A. Cavitational Mechanisms in Ultrasound-Accelerated Fibrinolysis. Ultrasound Med. Biol. 2007, 33, 924–933. [Google Scholar] [CrossRef]
- Tachibana, K.; Tachibana, S. Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis. Circulation 1995, 92, 1148–1150. [Google Scholar] [CrossRef]
- Bader, K.B.; Gruber, M.J.; Holland, C.K. Shaken and Stirred: Mechanisms of Ultrasound-Enhanced Thrombolysis. Ultrasound Med. Biol. 2015, 41, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petit, B.; Bohren, Y.; Gaud, E.; Bussat, P.; Arditi, M.; Yan, F.; Tranquart, F.; Allémann, E. Sonothrombolysis: The Contribution of Stable and Inertial Cavitation to Clot Lysis. Ultrasound Med. Biol. 2015, 41, 1402–1410. [Google Scholar] [CrossRef]
- Schäfer, S.; Kliner, S.; Klinghammer, L.; Kaarmann, H.; Lucic, I.; Nixdorff, U.; Rosenschein, U.; Daniel, W.G.; Flachskampf, F.A. Influence of ultrasound operating parameters on ultrasound-induced thrombolysis in vitro. Ultrasound Med. Biol. 2005, 31, 841–847. [Google Scholar] [CrossRef]
- Cui, H.; Yang, X. Laser enhanced high-intensity focused ultrasound thrombolysis: Anin vitrostudy. J. Acoust. Soc. Am. 2013, 133, EL123–EL128. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.J.; Bavani, N.; Dhamija, A.; Lindsell, C.J. Effect of mild hypothermia on the thrombolytic efficacy of 120 kHz ultrasound enhanced thrombolysis in an in-vitro human clot model. Thromb. Res. 2006, 117, 603–608. [Google Scholar] [CrossRef]
- Greis, C. Technology overview: SonoVue (Bracco, Milan). Eur. Radiol. 2004, 14, P11–P15. [Google Scholar] [CrossRef] [PubMed]
- Apfel, R.E.; Holland, C. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med. Biol. 1991, 17, 179–185. [Google Scholar] [CrossRef]
- Kim, J.; Lindsey, B.D.; Chang, W.-Y.; Dai, X.; Stavas, J.M.; Dayton, P.A.; Jiang, X. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suo, D.; Jin, Z.; Jiang, X.; Dayton, P.A.; Jing, Y. Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: AnIn vitrostudy. Appl. Phys. Lett. 2017, 110, 023703. [Google Scholar] [CrossRef]
- Sutton, J.T.; Ivancevich, N.M.; Perrin, S.R.; Vela, D.C.; Holland, C.K. Clot Retraction Affects the Extent of Ultrasound-Enhanced Thrombolysis in an Ex Vivo Porcine Thrombosis Model. Ultrasound Med. Biol. 2013, 39, 813–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, S.; Coussios, C.-C.; Ammi, A.Y.; Mast, T.D.; De Courten-Myers, G.M.; Holland, C.K. Ultrasound-Enhanced Thrombolysis Using Definity® as a Cavitation Nucleation Agent. Ultrasound Med. Biol. 2008, 34, 1421–1433. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Shi, T.; Su, C. Ultrasound with Microbubble Contrast Agent and Urokinase for Thrombosis. Ultrasound Med. Biol. 2019, 45, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Engelberger, R.P.; Spirk, D.; Willenberg, T.A.; Alatri, A.; Do, D.-D.; Baumgartner, I.; Kucher, N. Ultrasound-Assisted Versus Conventional Catheter-Directed Thrombolysis for Acute Iliofemoral Deep Vein Thrombosis. Circ. Cardiovasc. Interv. 2015, 8, e002027. [Google Scholar] [CrossRef] [Green Version]
- Kucher, N.; Boekstegers, P.; Müller, O.J.; Kupatt, C.; Beyer-Westendorf, J.; Heitzer, T.; Tebbe, U.; Horstkotte, J.; Müller, R.; Blessing, E.; et al. Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism. Circulation 2014, 129, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Phenix, C.P.; Togtema, M.; Pichardo, S.; Zehbe, I.; Curiel, L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J. Pharm. Pharm. Sci. 2014, 17, 136–153. [Google Scholar] [CrossRef]
- Owens, C.A. Ultrasound-Enhanced Thrombolysis: EKOS EndoWave Infusion Catheter System. Semin. Interv. Radiol. 2008, 25, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Composition | Piezo Layer | Matching Layer | Conductive Sheet | Core Wire |
---|---|---|---|---|
Material | PZT4 | Conductive Glue Mixture | Copper | Silvre Plated Copper Alloy |
Dimension (um) | 2000 × 400 × 350 | 100 | 100 | 40 |
Young’s module (GPa) | 63 | 11 | - | - |
Poisson’s ratio | 0.34 | 0.3 | - | - |
Qm | 500 | - | - | - |
Density (kg/m3) | 7550 | 1350 | - | - |
Sound speed (m/s) | 4800 | 2200 | - | - |
Parameter | PNP(MPa) | ISPPA(W/cm2) | ISPTA(mW/cm2) | MI |
---|---|---|---|---|
Values | 0.4144 | 4.8917 | 20.0305 | 0.3869 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Huang, W.; Xu, J.; Shao, W.; Cui, Y. Efficacy Estimation of Microbubble-Assisted Local Sonothrombolysis Using a Catheter with a Series of Miniature Transducers. Micromachines 2021, 12, 612. https://doi.org/10.3390/mi12060612
Li P, Huang W, Xu J, Shao W, Cui Y. Efficacy Estimation of Microbubble-Assisted Local Sonothrombolysis Using a Catheter with a Series of Miniature Transducers. Micromachines. 2021; 12(6):612. https://doi.org/10.3390/mi12060612
Chicago/Turabian StyleLi, Peiyang, Wenchang Huang, Jie Xu, Weiwei Shao, and Yaoyao Cui. 2021. "Efficacy Estimation of Microbubble-Assisted Local Sonothrombolysis Using a Catheter with a Series of Miniature Transducers" Micromachines 12, no. 6: 612. https://doi.org/10.3390/mi12060612
APA StyleLi, P., Huang, W., Xu, J., Shao, W., & Cui, Y. (2021). Efficacy Estimation of Microbubble-Assisted Local Sonothrombolysis Using a Catheter with a Series of Miniature Transducers. Micromachines, 12(6), 612. https://doi.org/10.3390/mi12060612