Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis
Abstract
:1. Introduction
2. Direct Penetration Methods
2.1. Microinjection
2.2. Particle Bombardment
3. Physical Energy Based Membrane Disruption and Intracellular Delivery
3.1. Mechanoporation
3.1.1. Constriction Channel Based Intracellular Delivery
3.1.2. Combination of Mechanoporation and Electroporation (Mechano-Electroporation)
3.2. Electroporation
3.2.1. Microfluidic Electroporation
3.2.2. Nanochannel Electroporation
3.2.3. Nanostraw Electroporation
3.2.4. Nanofountain Probe Electroporation
3.2.5. Micro/Nano-Electrode-Based Devices
3.2.6. Field-Effect Transistor-Based Device for SCEP
3.2.7. Nano-Localized Electroporation
3.2.8. Parallel Single-Cell Electroporation
3.3. Optoporation
3.4. Sonoporation
3.5. Magnetoporation
3.6. Thermoporation
4. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef]
- Stewart, M.P.; Sharei, A.R.; Ding, X.S.; Sahay, G.; Langer, R.S.; Jensen, K.F. In vitro and ex vivo strategies for intracellular delivery. Nat. Cell Biol. 2016, 538, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, M.K.; Vermerris, W. Recent advances in nanomaterials for gene delivery—A review. Nanomaterials 2017, 7, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Waehler, R.; Russell, S.J.; Curiel, D.T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 2007, 8, 573–587. [Google Scholar] [CrossRef]
- Walther, W.; Stein, U. Viral vectors for gene transfer. Drugs 2000, 60, 249–271. [Google Scholar] [CrossRef]
- Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346–358. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100–109. [Google Scholar] [CrossRef]
- Van Der Loo, J.C.; Wright, J.F. Progress and challenges in viral vector manufacturing. Hum. Mol. Genet. 2015, 25, R42–R52. [Google Scholar] [CrossRef] [Green Version]
- Mintzer, M.A.; Simanek, E.E. Nonviral vectors for gene delivery. Chem. Rev. 2008, 109, 259–302. [Google Scholar] [CrossRef]
- Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kwak, K.J.; Yang, Z.; Zhang, A.; Zhang, X.; Sullivan, R.; Lin, D.; Lee, R.L.; Castro, C.; Ghoshal, K.; et al. Extracellular mRNA detected by molecular beacons in tethered lipoplex nanoparticles for diagnosis of human hepatocellular carcinoma. PLoS ONE 2018, 13, e0198552. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Song, Y.K.; Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999, 6, 1258–1266. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.J.; Yang, Z.; Rahman, M.; Ma, J.; Kwak, K.J.; McElroy, J.; Shilo, K.; Goparaju, C.; Yu, L.; Rom, W.; et al. Extracellular mRNA detected by tethered lipoplex nanoparticle biochip for lung adenocarcinoma detection. Am. J. Respir. Crit. Care Med. 2016, 193, 1431–1433. [Google Scholar] [CrossRef] [Green Version]
- Ray, M.; Lee, Y.-W.; Scaletti, F.; Yu, R.; Rotello, V.M. Intracellular delivery of proteins by nanocarriers. Nanomedicine 2017, 12, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Fu, A.; Tang, R.; Hardie, J.; Farkas, M.E.; Rotello, V.M. Promises and pitfalls of intracellular delivery of proteins. Bioconjugate Chem. 2014, 25, 1602–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-X.; Li, M.; Lee, C.; Chakraborty, S.; Kim, H.-W.; Bao, G.; Leong, K.W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev. 2017, 117, 9874–9906. [Google Scholar] [CrossRef]
- Cox, D.B.T.; Platt, R.; Zhang, F. Therapeutic genome editing: Prospects and challenges. Nat. Med. 2015, 21, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Sahay, G.; Alakhova, D.Y.; Kabanov, A.V. Endocytosis of nanomedicines. J. Control. Release 2010, 145, 182–195. [Google Scholar] [CrossRef] [Green Version]
- Duncan, R.; Richardson, S.C.W. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: Opportunities and challenges. Mol. Pharm. 2012, 9, 2380–2402. [Google Scholar] [CrossRef] [PubMed]
- Elouahabi, A.; Ruysschaert, J.-M. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 2005, 11, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Morille, M.; Passirani, C.; Vonarbourg, A.; Clavreul, A.; Benoit, J.-P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008, 29, 3477–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torchilin, V.P. Recent approaches to intracellular delivery of drugs and dna and organelle targeting. Annu. Rev. Biomed. Eng. 2006, 8, 343–375. [Google Scholar] [CrossRef]
- Milletti, F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today 2012, 17, 850–860. [Google Scholar] [CrossRef]
- Mellott, A.J.; Forrest, M.L.; Detamore, M.S.; Engineering, P. Physical Non-Viral Gene Delivery Methods for Tissue Engineering; Springer: Berlin, Germany, 2016; Volume 41, ISBN 1043901206781. [Google Scholar]
- Villemejane, J.; Mir, L.M. Physical methods of nucleic acid transfer: General concepts and applications. Br. J. Pharmacol. 2009, 157, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into electric fields. EMBO J. 1982, 1, 841–845. [Google Scholar] [CrossRef]
- Selmeczi, D.; Hansen, T.S.; Met, O.; Svane, I.M.; Larsen, N.B. Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip. Biomed. Microdevices 2011, 13, 383–392. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Lu, C. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply. Biotechnol. Bioeng. 2008, 100, 579–586. [Google Scholar] [CrossRef]
- Shinde, A.; Illath, K.; Gupta, P.; Shinde, P.; Lim, K.-T.; Nagai, M.; Santra, T. A review of single-cell adhesion force kinetics and applications. Cells 2021, 10, 577. [Google Scholar] [CrossRef]
- Gupta, P.; Balasubramaniam, N.; Chang, H.-Y.; Tseng, F.-G.; Santra, T.S. A single-neuron: Current trends and future prospects. Cells 2020, 9, 1528. [Google Scholar] [CrossRef] [PubMed]
- Santra, T.S.; Tseng, F.-G. Handbook of Single Cell Technologies; Springer: Singapore, 2021; ISBN 978-981-10-8952-7. [Google Scholar]
- Santra, T.S.; Tseng, F.-G. Single-cell analysis. Cells 2020, 9, 1993. [Google Scholar] [CrossRef]
- Santra, T.S. Microfluidics and Bio-NEMS: Devices and Applications; Jenny Stanford Publisher: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Santra, T.S.; Tseng, F. Essentials of Single Cell Analysis; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783662491188. [Google Scholar]
- Tseng, F.; Santra, T.S. Single Cell Analysis in Biotechnology and Systems Biology; MDPI: Basel, Switzerland, 2016; ISBN 9783038421931. [Google Scholar]
- Santra, T.S.; Tseng, F.G. Micro/nanofluidic devices for single cell analysis. Micromachines 2014, 5, 154–157. [Google Scholar] [CrossRef] [Green Version]
- Shinde, P.; Mohan, L.; Kumar, A.; Dey, K.; Maddi, A.; Patananan, A.N.; Tseng, F.-G.; Chang, H.-Y.; Nagai, M.; Santra, T.S. Current trends of microfluidic single-cell technologies. Int. J. Mol. Sci. 2018, 19, 3143. [Google Scholar] [CrossRef] [Green Version]
- Tseng, F.; Santra, T.S. Micro/Nanofluidic Devices for Single Cell Analysis; MDPI: Basel, Switzerland, 2015. [Google Scholar]
- Meacham, J.M.; Durvasula, K.; Degertekin, F.L.; Fedorov, A.G. Physical methods for intracellular delivery. J. Lab. Autom. 2014, 19, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.P.; Langer, R.; Jensen, K.F. Intracellular delivery by membrane disruption: Mechanisms, strategies, and concepts. Chem. Rev. 2018, 118, 7409–7531. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, M.M.; Santra, T.S. Microinjection for single-cell analysis. In Essentials of Single-Cell Analysis; Springer: Berlin, Germany, 2016; pp. 85–129. ISBN 9783662491164. [Google Scholar]
- Kar, S.; Loganathan, M.; Dey, K.; Shinde, P.; Chang, H.-Y.; Nagai, M.; Santra, T.S. Single-cell electroporation: Current trends, applications and future prospects. J. Micromech. Microeng. 2018, 28, 123002. [Google Scholar] [CrossRef]
- Schneckenburger, H.; Hendinger, A.; Sailer, R.; Strauss, W.S.L.; Schmitt, M. Laser-assisted optoporation of single cells. J. Biomed. Opt. 2002, 7, 410–416. [Google Scholar] [CrossRef]
- Arora, S.; Gupta, G.; Singh, S.; Singh, N. Advances in magnetofection—Magnetically guided nucleic acid delivery: A review. J. Pharm. Technol. Res. Manag. 2013, 1, 19–29. [Google Scholar] [CrossRef]
- Kumar, A.; Mohan, L.; Shinde, P.; Chang, H.-Y.; Nagai, M.; Santra, T.S. Mechanoporation: Toward single cell approaches. In Handbook of Single Cell Technologies; Springer Nature: Basingstoke, UK, 2018; pp. 1–29. ISBN 9789811048579. [Google Scholar]
- Fan, Z.; Liu, H.; Mayer, M.; Deng, C.X. Spatiotemporally controlled single cell sonoporation. Proc. Natl. Acad. Sci. USA 2012, 109, 16486–16491. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, I.T.; Todorova, R.; Zlatanov, I. Spectrofluorometric and microcalorimetric study of the thermal poration relevant to the mechanism of thermohaemolysis. Int. J. Hyperth. 1999, 15, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Sutter Instrument. Introduction to Microinjection. Available online: https://www.sutter.com/2.html (accessed on 5 May 2021).
- Manoj, H.; Gupta, P.; Mohan, L.; Nagai, M.; Wankhar, S.; Santra, T.S. Microneedles: Current trends and applications. In Microfluidics and Bio-MEMS: Devices and Applications; Jenny Stanford Publisher Pte. Ltd.: Singapore, 2020; ISBN 978-1-003-01493-5. [Google Scholar]
- Capecchi, M.R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 1980, 22, 479–488. [Google Scholar] [CrossRef]
- Wong, R.W.-C.; Sham, M.-H.; Lau, Y.-L.; Chan, S.-Y. An efficient method of generating transgenic mice by pronuclear microinjection. Mol. Biotechnol. 2000, 15, 155–160. [Google Scholar] [CrossRef]
- Gordon, J.W.; Scangos, G.A.; Plotkin, D.J.; Barbosa, J.A.; Ruddle, F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 1980, 77, 7380–7384. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, L.-C. Single-cell microinjection technology in cell biology. BioEssays 2008, 30, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Gueroussov, S.; Tarnawsky, S.P.; Cui, X.A.; Mahadevan, K.; Palazzo, A.F. Analysis of mRNA nuclear export kinetics in mammalian cells by microinjection. J. Vis. Exp. 2010, e2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taverna, E.; Haffner, C.; Pepperkok, R.; Huttner, W.B. A new approach to manipulate the fate of single neural stem cells in tissue. Nat. Neurosci. 2011, 15, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Feramisco, J.R.; Gross, M.; Kamata, T.; Rosenberg, M.; Sweet, R.W. Microinjection of the oncogene form of the human H-ras (t-24) protein results in rapid proliferation of quiescent cells. Cell 1984, 38, 109–117. [Google Scholar] [CrossRef]
- Masani, M.Y.A.; Noll, G.A.; Parveez, G.K.A.; Sambanthamurthi, R.; Prüfer, D. Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS ONE 2014, 9, e96831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamo, A.; Jensen, K.F. Microfluidic based single cell microinjection. Lab Chip 2008, 8, 1258–1261. [Google Scholar] [CrossRef]
- Uning, K.T.; Ichikawa, K.; Hirao, A.; Michimoto, T.; Sato, T.; Kume, H.; Nishida, T.; Iwakawa, S.; Yamanishi, Y. Microfluidic chip for simultaneous loading and injection of a single cell by using rack and pinion mechanisms. In Proceedings of the 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 392–395. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ballas, C.B.; Rao, M.P. Towards ultrahigh throughput microinjection: MEMS-based massively-parallelized mechanoporation. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 594–597. [Google Scholar] [CrossRef] [Green Version]
- Simonis, M.; Hübner, W.; Wilking, A.; Huser, T.; Hennig, S. Survival rate of eukaryotic cells following electrophoretic nanoinjection. Sci. Rep. 2017, 7, 41277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillaume-Gentil, O.; Potthoff, E.; Ossola, D.; Franz, C.M.; Zambelli, T.; Vorholt, J.A. Force-controlled manipulation of single cells: From AFM to FluidFM. Trends Biotechnol. 2014, 32, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Meister, A.; Gabi, M.; Behr, P.; Studer, P.; Voros, J.; Niedermann, P.; Bitterli, J.; Polesel, J.; Liley, M.; Heinzelmann, H.; et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 2009, 9, 2501–2507. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, H.; Sha, X.; Gu, L.; Zhan, Z.; Li, W.J. A review of automated microinjection of zebrafish embryos. Micromachines 2018, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laforge, F.O.; Carpino, J.; Rotenberg, S.A.; Mirkin, M.V. Electrochemical attosyringe. Proc. Natl. Acad. Sci. USA 2007, 104, 11895–11900. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.M.; Wolf, E.D.; Wu, R.; Sanford, J.C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987, 327, 70–73. [Google Scholar] [CrossRef]
- Gan, C. Gene Gun Accelerates DNA-Coated Particles to Transform Intact Cells. The Scientist. 1989, p. 25. Available online: https://www.the-scientist.com/new-products/gene-gun-accelerates-dna-coated-particles-to-transform-intact-cells-61842 (accessed on 8 May 2021).
- Yang, N.S.; Burkholder, J.; Roberts, B.; Martinell, B.; McCabe, D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl. Acad. Sci. USA 1990, 87, 9568–9572. [Google Scholar] [CrossRef] [Green Version]
- Sanford, J.; Smith, F.; Russell, J. Optimizing the biolistic process for different biological applications. Methods Enzymol. 1993, 217, 483–509. [Google Scholar] [CrossRef]
- Klein, T.M.; Fitzpatrick-McElligott, S. Particle bombardment: A universal approach for gene transfer to cells and tissues. Curr. Opin. Biotechnol. 1993, 4, 583–590. [Google Scholar] [CrossRef]
- O’Brien, J.A.; Lummis, S.C.R. Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat. Protoc. 2006, 1, 977–981. [Google Scholar] [CrossRef]
- Khan, Y. The gene gun: Current application in cutaneous gene therapy. J. Pakistan Assoc. Dermatologists 2002, 12, 167–170. [Google Scholar]
- Wang, J.; Murakami, T.; Yoshida, S.; Matsuoka, H.; Ishii, A.; Tanaka, T.; Tobita, K.; Ohtsuki, M.; Nakagawa, H.; Kusama, M.; et al. Predominant cell-mediated immunity in the oral mucosa: Gene gun-based vaccination against infectious diseases. J. Dermatol. Sci. 2003, 31, 203–210. [Google Scholar] [CrossRef]
- O’Brien, J.A.; Holt, M.; Whiteside, G.; Lummis, S.C.; Hastings, M.H. Modifications to the hand-held Gene Gun: Improvements for in vitro Biolistic transfection of organotypic neuronal tissue. J. Neurosci. Methods 2001, 112, 57–64. [Google Scholar] [CrossRef]
- Dileo, J.; Millerjr, T.E.; Chesnoy, S.; Huang, L. Gene transfer to subdermal tissues via a new gene gun design. Hum. Gene Ther. 2003, 14, 79–87. [Google Scholar] [CrossRef]
- O’Brien, J.A.; Lummis, S.C. Nano-biolistics: A method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol. 2011, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Sharei, A.; Zoldan, J.; Adamo, A.; Sim, W.Y.; Cho, N.; Jackson, E.; Mao, S.; Schneider, S.; Han, M.-J.; Lytton-Jean, A.; et al. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA 2013, 110, 2082–2087. [Google Scholar] [CrossRef] [Green Version]
- Pak, O.S.; Young, Y.-N.; Marple, G.R.; Veerapaneni, S.; Stone, H.A. Gating of a mechanosensitive channel due to cellular flows. Proc. Natl. Acad. Sci. USA 2015, 112, 9822–9827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Kizer, M.; Rada, M.; Sage, J.; Wang, X.; Cheon, D.-J.; Chung, A.J. Intracellular delivery of nanomaterials via an inertial microfluidic cell hydroporator. Nano Lett. 2018, 18, 2705–2710. [Google Scholar] [CrossRef]
- Szeto, G.L.; Van Egeren, D.S.; Worku, H.A.; Sharei, A.R.; Alejandro, B.; Park, C.; Frew, K.; Brefo, M.S.; Mao, S.; Heimann, M.; et al. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Sci. Rep. 2015, 5, srep10276. [Google Scholar] [CrossRef]
- Castiglioni, P.; Gerloni, M.; Zanetti, M. Genetically programmed B lymphocytes are highly efficient in inducing anti-virus protective immunity mediated by central memory CD8 T cells. Vaccine 2004, 23, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Adler, L.N.; Jiang, W.; Bhamidipati, K.; Millican, M.; Macaubas, C.; Hung, S.-C.; Mellins, E.D. The other function: Class II-restricted antigen presentation by B cells. Front. Immunol. 2017, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.J.; Takabayashi, K.; Cheng, P.-M.; Nguyen, M.-D.; Corr, M.; Tuck, S.; Raz, E. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat. Biotechnol. 2000, 18, 509–514. [Google Scholar] [CrossRef]
- Ding, X.; Stewart, M.P.; Sharei, A.; Weaver, J.C.; Langer, R.S.; Jensen, K.F. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat. Biomed. Eng. 2017, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Santra, T.S.; Wang, P.C.; Tseng, F.G. Electroporation based drug delivery and its applications. In Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies; IntechOpen Ltd.: London, UK, 2013; pp. 267–322. [Google Scholar]
- Dey, K.; Kar, S.; Shinde, P.; Mohan, L.; Bajpai, S.K.; Santra, T.S. Microfluidic electroporation and applications. In Microfluidics and Bio-MEMS: Devices and Applications; Jenny Standford Publishing: New York, NY, USA, 2020; ISBN 978-1-003-01493-5. [Google Scholar]
- Pavlin, M.; Kotnik, T.; Miklavčič, D.; Kramar, P.; Lebar, A.M. Chapter seven electroporation of planar lipid bilayers and membranes. Adv. Planar Lipid Bilayers Liposomes 2008, 6, 165–226. [Google Scholar] [CrossRef]
- Krassowska, W.; Filev, P.D. Modeling electroporation in a single cell. Biophys. J. 2007, 92, 404–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotnik, T.; Pucihar, G.; Miklavčič, D. Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J. Membr. Biol. 2010, 236, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.C.; Krassowska, W. Asymptotic model of electroporation. Phys. Rev. E 1999, 59, 3471–3482. [Google Scholar] [CrossRef]
- Santra, T.S.; Wang, P.-C.; Chang, H.-Y.; Tseng, F.-G. Tuning nano electric field to affect restrictive membrane area on localized single cell nano-electroporation. Appl. Phys. Lett. 2013, 103, 233701. [Google Scholar] [CrossRef]
- Lewis, T. A model for bilayer membrane electroporation based on resultant electromechanical stress. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 769–777. [Google Scholar] [CrossRef]
- Zimmermann, U.; Pilwat, G.; Beckers, F.; Riemann, F. Effects of external electrical fields on cell membranes. Bioelectrochem. Bioenerg. 1976, 3, 58–83. [Google Scholar] [CrossRef]
- Crowley, J.M. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys. J. 1973, 13, 711–724. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Saltzman, W.M. Synthetic DNA delivery systems. Nat. Biotechnol. 2000, 18, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Wong, I.Y.; Almquist, B.D.; Melosh, N.A. Dynamic actuation using nano-bio interfaces. Mater. Today 2010, 13, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Santra, T.S.; Chen, C.-W.; Chang, H.-Y.; Tseng, F.-G. Dielectric passivation layer as a substratum on localized single-cell electroporation. RSC Adv. 2016, 6, 10979–10986. [Google Scholar] [CrossRef]
- Kang, W.; Yavari, F.; Minary-Jolandan, M.; Giraldo-Vela, J.P.; Safi, A.; McNaughton, R.; Parpoil, V.; Espinosa, H.D. Nanofountain Probe Electroporation (NFP-E) of single cells. Nano Lett. 2013, 13, 2448–2457. [Google Scholar] [CrossRef] [Green Version]
- Di Carlo, D.; Aghdam, N.; Lee, L.P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 2006, 78, 4925–4930. [Google Scholar] [CrossRef]
- Rao, C.V.; Wolf, D.M.; Arkin, A.P. Control, exploitation and tolerance of intracellular noise. Nat. Cell Biol. 2002, 420, 231–237. [Google Scholar] [CrossRef]
- Olofsson, J.; Nolkrantz, K.; Ryttsén, F.; Lambie, B.A.; Weber, S.G.; Orwar, O. Single-cell electroporation. Curr. Opin. Biotechnol. 2003, 14, 29–34. [Google Scholar] [CrossRef]
- Ko, M.S.; Nakauchi, H.; Takahashi, N. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 1990, 9, 2835–2842. [Google Scholar] [CrossRef]
- Huang, Y.; Rubinsky, B. Micro-electroporation: Improving the efficiency and understanding of electrical permeabilization of cells. Biomed. Microdevices 1999, 2, 145–150. [Google Scholar] [CrossRef]
- Huang, Y.; Rubinsky, B. Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation. Sensors Actuators A Phys. 2003, 104, 205–212. [Google Scholar] [CrossRef]
- Boukany, P.E.; Morss, A.; Liao, W.-C.; Henslee, B.E.; Jung, H.; Zhang, X.; Yu, B.; Wang, X.; Wu, Y.; Li, L.; et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotechnol. 2011, 6, 747–754. [Google Scholar] [CrossRef]
- Xie, X.; Xu, A.M.; Leal-Ortiz, S.; Cao, Y.; Garner, C.C.; Melosh, N.A. Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 2013, 7, 4351–4358. [Google Scholar] [CrossRef]
- Giraldo-Vela, J.P.; Kang, W.; McNaughton, R.L.; Zhang, X.; Wile, B.M.; Tsourkas, A.; Bao, G.; Espinosa, H.D. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons. Small 2015, 11, 2386–2391. [Google Scholar] [CrossRef] [PubMed]
- Bürgel, S.C.; Escobedo, C.; Haandbæk, N.; Hierlemann, A. On-chip electroporation and impedance spectroscopy of single-cells. Sensors Actuators B Chem. 2015, 210, 82–90. [Google Scholar] [CrossRef]
- Zheng, M.; Shan, J.W.; Lin, H.; Shreiber, D.I.; Zahn, J.D. Hydrodynamically controlled cell rotation in an electroporation microchip to circumferentially deliver molecules into single cells. Microfluid. Nanofluidics 2016, 20, 1–12. [Google Scholar] [CrossRef]
- Santra, T.; Chang, H.-Y.; Wang, P.-C.; Tseng, F.-G. Impact of pulse duration on localized single-cell nano-electroporation. Analyst 2014, 139, 6249–6258. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Santra, T.; Chang, C.-J.; Chen, T.-J.; Wang, P.-C.; Tseng, F.-G. Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip. Biomed. Microdevices 2012, 14, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Jokilaakso, N.; Salm, E.; Chen, A.; Millet, L.; Guevara, C.D.; Dorvel, B.; Reddy, B.; Karlstrom, A.E.; Chen, Y.; Ji, H.; et al. Ultra-localized single cell electroporation using silicon nanowires. Lab Chip 2012, 13, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Santra, T.S.; Kar, S.; Chang, H.-Y.; Tseng, F.-G. Nano-localized single-cell nano-electroporation. Lab Chip 2020, 20, 4194–4204. [Google Scholar] [CrossRef]
- Santra, T.S.; Lee, C.-W.; Kar, S.; Borana, J.; Wang, P.-C.; Tseng, F.-G. Nanolocalized single cell membrane nanoelectroporation. IEEE Nanotechnol. Mag. 2014, 8, 285–288. [Google Scholar] [CrossRef]
- Khine, M.; Ionescu-Zanetti, C.; Blatz, A.; Wang, L.-P.; Lee, L.P. Single-cell electroporation arrays with real-time monitoring and feedback control. Lab Chip 2007, 7, 457–462. [Google Scholar] [CrossRef]
- Valero, A.; Post, J.N.; Van Nieuwkasteele, J.W.; Ter Braak, P.M.; Kruijer, W.; Berg, A.V.D. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 2007, 8, 62–67. [Google Scholar] [CrossRef]
- Valley, J.K.; Neale, S.; Hsu, H.-Y.; Ohta, A.T.; Jamshidi, A.; Wu, M.C. Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. Lab Chip 2009, 9, 1714–1720. [Google Scholar] [CrossRef]
- Fei, Z.; Hu, X.; Choi, H.-W.; Wang, S.; Farson, D.; Lee, L.J. Micronozzle array enhanced sandwich electroporation of embryonic stem cells. Anal. Chem. 2010, 82, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, S.-C.; Wang, C.; Wu, Q.; Wang, Z. A DEP-assisted single-cell electroporation chip with low operation voltage. In Proceedings of the IEEE Sensors, Waikoloa, HI, USA, 1–4 November 2010; pp. 2097–2100. [Google Scholar] [CrossRef]
- Chang, L.; Bertani, P.; Gallego-Perez, D.; Yang, Z.; Chen, F.; Chiang, C.; Malkoc, V.; Kuang, T.; Gao, K.; Lee, L.J.; et al. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale 2016, 8, 243–252. [Google Scholar] [CrossRef]
- Chang, L.; Gallego-Perez, D.; Chiang, C.L.; Bertani, P.; Kuang, T.; Sheng, Y.; Chen, F.; Chen, Z.; Shi, J.; Yang, H.; et al. Controllable large-scale transfection of primary mammalian cardiomyocytes on a nanochannel array platform. Small 2016, 12, 5971–5980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Zhu, R. Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array. Sci. Rep. 2016, 6, 31392. [Google Scholar] [CrossRef]
- Mohan, L.; Kar, S.; Mahapatra, P.S.; Nagai, M.; Santra, T.S. Fabrication of TiO2 microspikes for highly efficient intracellular delivery by pulse laser-assisted photoporation. RSC Adv. 2021, 11, 9336–9348. [Google Scholar] [CrossRef]
- Mohan, L.; Kar, S.; Nagai, M.; Santra, T.S. Electrochemical fabrication of TiO2 micro-flowers for an efficient intracellular delivery using nanosecond light pulse. Mater. Chem. Phys. 2021, 267, 124604. [Google Scholar] [CrossRef]
- Santra, T.S.; Kar, S.; Chen, T.-C.; Chen, C.-W.; Borana, J.; Lee, M.-C.; Tseng, F.-G. Near-infrared nanosecond-pulsed laser-activated highly efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale 2020, 12, 12057–12067. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.; Kar, S.; Loganathan, M.; Chang, H.-Y.; Tseng, F.-G.; Nagai, M.; Santra, T.S. Infrared pulse laser-activated highly efficient intracellular delivery using titanium microdish device. ACS Biomater. Sci. Eng. 2020, 6, 5645–5652. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Shinde, P.; Nagai, M.; Santra, T.S. Optical manipulation of cells. In Microfluidics and Bio-MEMS; Jenny Standford Publishing: New York, NY, USA, 2020; pp. 49–94. [Google Scholar] [CrossRef]
- Xiong, R.; Samal, S.K.; Demeester, J.; Skirtach, A.G.; De Smedt, S.C.; Braeckmans, K. Laser-assisted photoporation: Fundamentals, technological advances and applications. Adv. Phys. X 2016, 1, 596–620. [Google Scholar] [CrossRef] [Green Version]
- Tsukakoshi, M.; Kurata, S.; Nomiya, Y.; Ikawa, Y.; Kasuya, T. A novel method of DNA transfection by laser microbeam cell surgery. Appl. Phys. A 1984, 35, 135–140. [Google Scholar] [CrossRef]
- Nikolskaya, A.V.; Nikolski, V.P.; Efimov, I.R. Transfection of cardiac cells by means of laser-assisted optoporation. In Handbook of Biophotonics; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar] [CrossRef]
- Davis, A.A.; Farrar, M.J.; Nishimura, N.; Jin, M.M.; Schaffer, C.B. Optoporation and genetic manipulation of cells using femtosecond laser pulses. Biophys. J. 2013, 105, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Tirlapur, U.K.; König, K. Targeted transfection by femtosecond laser. Nat. Cell Biol. 2002, 418, 290–291. [Google Scholar] [CrossRef]
- Dholakia, K.; Mthunzi, P.; Gunn-Moore, F. Phototransfection of mammalian cells using femtosecond laser pulses: Optimization and applicability to stem cell differentiation. J. Biomed. Opt. 2010, 15, 041507. [Google Scholar] [CrossRef] [Green Version]
- Tsampoula, X.; Garcés-Chávez, V.; Comrie, M.; Stevenson, D.J.; Agate, B.; Brown, C.T.A.; Gunn-Moore, F.; Dholakia, K. Femtosecond cellular transfection using a nondiffracting light beam. Appl. Phys. Lett. 2007, 91, 053902. [Google Scholar] [CrossRef]
- Uchugonova, A.; König, K.; Bueckle, R.; Isemann, A.; Tempea, G. Targeted transfection of stem cells with sub-20 femtosecond laser pulses. Opt. Express 2008, 16, 9357–9364. [Google Scholar] [CrossRef]
- Antkowiak, M.; Torres-Mapa, M.L.; Dholakia, K.; Gunn-Moore, F.J. Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation. Biomed. Opt. Express 2010, 1, 414–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinto-Su, P.A.; Venugopalan, V.; Ohl, C.D. Generation of laser-induced cavitation bubbles with a digital hologram. Opt. Express 2008, 16, 18964–18969. [Google Scholar] [CrossRef] [Green Version]
- Nikolskaya, A.V.; Nikolski, V.P.; Efimov, I. Gene printer: Laser-scanning targeted transfection of cultured cardiac neonatal rat cells. Cell Commun. Adhes. 2006, 13, 217–222. [Google Scholar] [CrossRef]
- Qin, Z.; Bischof, J.C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 2012, 41, 1191–1217. [Google Scholar] [CrossRef]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007, 2, 681–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waleed, M.; Hwang, S.-U.; Kim, J.-D.; Shabbir, I.; Shin, S.-M.; Lee, Y.-G. Single-cell optoporation and transfection using femtosecond laser and optical tweezers. Biomed. Opt. Express 2013, 4, 1533–1547. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-H.; TeSlaa, T.; Kalim, S.; French, C.T.; Moghadam, S.; Wall, R.; Miller, J.F.; Witte, O.N.; Teitell, M.A.; Chiou, P.-Y. Photothermal nanoblade for large cargo delivery into mammalian cells. Anal. Chem. 2011, 83, 1321–1327. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-H.; TeSlaa, T.; Teitell, M.A.; Chiou, P.-Y. Photothermal nanoblade for patterned cell membrane cutting. Opt. Express 2010, 18, 23153–23160. [Google Scholar] [CrossRef] [Green Version]
- Patskovsky, S.; Qi, M.; Meunier, M. Single point single-cell nanoparticle mediated pulsed laser optoporation. Analyst 2019, 145, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Mehier-Humbert, S.; Bettinger, T.; Yan, F.; Guy, R.H. Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery. J. Control. Release 2005, 104, 213–222. [Google Scholar] [CrossRef]
- Karshafian, R.; Bevan, P.D.; Williams, R.; Samac, S.; Burns, P.N. Sonoporation by ultrasound-activated microbubble contrast agents: Effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med. Biol. 2009, 35, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Spurný, P.; Oberst, J.; Heinlein, D. Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite. Nat. Cell Biol. 2003, 423, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Nyborg, W.L. Ultrasonic microstreaming and related phenomena. Br. J. Cancer Suppl. 1982, 5, 156–160. [Google Scholar] [PubMed]
- Fan, Q.; Hu, W.; Ohta, A.T. Laser-induced microbubble poration of localized single cells. Lab Chip 2014, 14, 1572–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schillinger, U.; Brill, T.; Rudolph, C.; Huth, S.; Gersting, S.; Krötz, F.; Hirschberger, J.; Bergemann, C.; Plank, C. Advances in magnetofection—Magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 2005, 293, 501–508. [Google Scholar] [CrossRef]
- Das, A.; Gupta, P.; Chakraborty, D. Physical methods of gene transfer: Kinetics of gene delivery into cells: A review. Agric. Rev. 2015, 36, 61. [Google Scholar] [CrossRef]
- Brunetti-pierri, N. Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders; Springer: Berlin, Germany, 2017; ISBN 9783319534558. [Google Scholar]
- Pickard, M.R.; Barraud, P.; Chari, D.M. The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 2011, 32, 2274–2284. [Google Scholar] [CrossRef]
- Adams, C.F.; Pickard, M.R.; Chari, D.M. Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 737–741. [Google Scholar] [CrossRef]
- Buerli, T.; Pellegrino, C.; Baer, K.; Lardi-Studler, B.; Chudotvorova, I.; Fritschy, J.-M.; Medina, I.; Fuhrer, C. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat. Protoc. 2007, 2, 3090–3101. [Google Scholar] [CrossRef]
- Plank, C.; Zelphati, O.; Mykhaylyk, O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects. Adv. Drug Deliv. Rev. 2011, 63, 1300–1331. [Google Scholar] [CrossRef]
- Sanchez-Antequera, Y.; Mykhaylyk, O.; Van Til, N.P.; Cengizeroglu, A.; De Jong, J.H.; Huston, M.W.; Anton, M.; Johnston, I.C.D.; Pojda, Z.; Wagemaker, G.; et al. Magselectofection: An integrated method of nanomagnetic separation and genetic modification of target cells. Blood 2011, 117, e171–e181. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wang, L.; Wang, Z.; Cuschieri, A. Magnetoporation and magnetolysis of cancer cells via carbon nanotubes induced by rotating magnetic fields. Nano Lett. 2012, 12, 5117–5121. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.; Duesberg, G.; Hoenlein, W.; Kreupl, F.; Liebau, M.; Martin, R.; Rajasekharan, B.; Pamler, W.; Seidel, R.; Steinhoegl, W.; et al. How do carbon nanotubes fit into the semiconductor roadmap? Appl. Phys. A 2005, 80, 1141–1151. [Google Scholar] [CrossRef]
- Li, M.; Lohmueller, T.; Feldmann, J. Optical injection of gold nanoparticles into living cells. Nano Lett. 2014, 15, 770–775. [Google Scholar] [CrossRef]
- Ginet, P.; Montagne, K.; Akiyama, S.; Rajabpour, A.; Taniguchi, A.; Fujii, T.; Sakai, Y.; Kim, B.; Fourmy, D.; Volz, S. Towards single cell heat shock response by accurate control on thermal confinement with an on-chip microwire electrode. Lab Chip 2011, 11, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Noack, J.; Hüttmann, G.; Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. A 2005, 81, 1015–1047. [Google Scholar] [CrossRef]
- Lachaine, R.; Boutopoulos, C.; Lajoie, P.-Y.; Boulais, É.; Meunier, M. Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation. Nano Lett. 2016, 16, 3187–3194. [Google Scholar] [CrossRef]
- Zhu, M.; Baffou, G.; Meyerbröker, N.; Polleux, J. Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion. ACS Nano 2012, 6, 7227–7233. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, A.; Oddershede, L.B.; Bendix, P.M. Hot-nanoparticle-mediated fusion of selected cells. Nano Res. 2017, 10, 2034–2045. [Google Scholar] [CrossRef]
- Lavoie-Cardinal, F.; Salesse, C.; Bergeron, E.; Meunier, M.; De Koninck, P. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons. Sci. Rep. 2016, 6, 20619. [Google Scholar] [CrossRef] [Green Version]
- Ermakova, Y.G.; Lanin, A.A.; Fedotov, I.V.; Roshchin, M.; Kelmanson, I.; Kulik, D.; Bogdanova, Y.A.; Shokhina, A.G.; Bilan, D.S.; Staroverov, D.B.; et al. Thermogenetic neurostimulation with single-cell resolution. Nat. Commun. 2017, 8, 15362. [Google Scholar] [CrossRef] [Green Version]
- Robert, H.M.L.; Savatier, J.; Vial, S.; Verghese, J.; Wattellier, B.; Rigneault, H.; Monneret, S.; Polleux, J.; Baffou, G. Photothermal control of heat-shock protein expression at the single cell level. Small 2018, 14, e1801910. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.D.; Kim, U.; Soh, H.T. Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. USA 2008, 105, 18165–18170. [Google Scholar] [CrossRef] [Green Version]
- Dixon, A.J.; Dhanaliwala, A.H.; Chen, J.L.; Hossack, J.A. Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device. Ultrasound Med. Biol. 2013, 39, 1267–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotopoulis, S.; Eder, S.D.; Greve, M.M.; Holst, B.; Postema, M. Lab-on-a-chip device for fabrication of therapeutic microbubbles on demand. Biomed. Tech. Eng. 2013. [Google Scholar] [CrossRef] [Green Version]
- Longsine-Parker, W.; Wang, H.; Koo, C.; Kim, J.; Kim, B.; Jayaraman, A.; Han, A. Microfluidic electro-sonoporation: A multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave. Lab Chip 2013, 13, 2144. [Google Scholar] [CrossRef]
- Chun, K.; Hashiguchi, G.; Toshiyoshi, H.; Fujita, A. Fabrication of array of hollow microcapillaries used for injection of genetic materials into animal/plant cells. Jpn. J. Appl. Phys. 1999, 38, L279–L281. [Google Scholar] [CrossRef]
- Guenat, O.T.; Generelli, S.; Dadras, M.; Berdondini, L.; De Rooij, N.F.; Koudelka-Hep, M. Generic technological platform for microfabricating silicon nitride micro- and nanopipette arrays. J. Micromech. Microeng. 2005, 15, 2372–2378. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.H.; Fu, S.Q.; Nanakorn, T.; Garcia-Sanchez, F.; Chung, I.; Pizzorno, G.; Hanania, E.; Deisseroth, A.; Côté, R.; Heimfeld, S.; et al. Results of retroviral and adenoviral approaches to cancer gene therapy. Stem Cells 2009, 16, 247–250. [Google Scholar] [CrossRef]
- Longo, P.A.; Kavran, J.M.; Kim, M.-S.; Leahy, D.J. Generating mammalian stable cell lines by electroporation. Methods Enzym. 2013, 529, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Santra, T.S.; Tseng, F.G. Recent trends on micro/nanofluidic single cell electroporation. Micromachines 2013, 4, 333–356. [Google Scholar] [CrossRef] [Green Version]
- Sanford, J.C.; Klein, T.M.; Wolf, E.D.; Allen, N. Delivery of substances into cells and tissues using a particle bombardment process. Part. Sci. Technol. 1987, 5, 27–37. [Google Scholar] [CrossRef]
- Uchida, M.; Li, X.W.; Mertens, P.; Alpar, H.O. Transfection by particle bombardment: Delivery of plasmid DNA into mammalian cells using gene gun. Biochim. Biophys. Acta BBA Gen. Subj. 2009, 1790, 754–764. [Google Scholar] [CrossRef]
- Obataya, I.; Nakamura, C.; Han, S.; Nakamura, N.; Miyake, J. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett. 2005, 5, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Silberberg, Y.R.; Mieda, S.; Amemiya, Y.; Sato, T.; Kihara, T.; Nakamura, N.; Fukazawa, K.; Ishihara, K.; Miyake, J.; Nakamura, C. Evaluation of the actin cytoskeleton state using an antibody-functionalized nanoneedle and an AFM. Biosens. Bioelectron. 2013, 40, 3–9. [Google Scholar] [CrossRef] [PubMed]
Physical Method | Principle | Materials | Advantages | Limitations | References |
---|---|---|---|---|---|
Thermoporation | Cell membrane disruption by heat transfer. | Laser source to induce heat on cells. | Low heat due to the non-invasive approach. | Low penetration depth; Excess heat can induce thermohaemolysis. | [170,171] |
Magnetoporation | Cell membrane disruption by the magnetic field. | Magnetic field; Magnetic transfection agents. | Non-invasive; High efficiency; Allows high selectivity and sensitivity. | Throughput is low; Cell retrieval is not easy. | [47,172] |
Sonoporation | Cell membrane disruption by ultrasonic wave. | Ultrasound probe; Ultrasound contrast agents. | High efficiency; Simple fabrication process; Safer compared to the optical method. | Expensive fabrication and calibration process. | [49,173,174,175] |
Mechanoporation | Cell membrane disruption by mechanical stress. | Microchannels to create stress on cells. | High throughput; High efficiency; High cell viability. | There could be a trade-off between high cell viability and high transfection efficiency. | [80,83,176,177] |
Optoporation | Cell membrane disruption by the laser pulse. | Laser microscope system; Nanorods/Nanoparticles. | Contactless delivery method; High transfection efficiency. | Setup is expensive; Needs quality optical resolution. | [144,145] |
Electroporation | Cell membrane disruption by the electric field. | Electrodes; Pulse generator. | Simplicity; Cheaper; Absence of vector; High delivery efficiency. | Low throughput; Only cells responding to the electric field be used. | [178,179,180] |
Particle Bombardment | Cell membrane disruption by shooting with biolistic particles. | Metallic particles; High voltage generative devices. | Used in transfecting superficial tissue; High throughput. | Inflammatory response. | [181,182] |
Microinjection | Disruption of the cell membrane by micro/nanoneedles. | Microneedles; Syringe pumps. | High throughput; The volume of cargo can be controlled. | Expensive setup; Low efficiency; Skilled technician needed. | [44,63,183,184] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaladharan, K.; Kumar, A.; Gupta, P.; Illath, K.; Santra, T.S.; Tseng, F.-G. Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. Micromachines 2021, 12, 631. https://doi.org/10.3390/mi12060631
Kaladharan K, Kumar A, Gupta P, Illath K, Santra TS, Tseng F-G. Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. Micromachines. 2021; 12(6):631. https://doi.org/10.3390/mi12060631
Chicago/Turabian StyleKaladharan, Kiran, Ashish Kumar, Pallavi Gupta, Kavitha Illath, Tuhin Subhra Santra, and Fan-Gang Tseng. 2021. "Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis" Micromachines 12, no. 6: 631. https://doi.org/10.3390/mi12060631
APA StyleKaladharan, K., Kumar, A., Gupta, P., Illath, K., Santra, T. S., & Tseng, F. -G. (2021). Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. Micromachines, 12(6), 631. https://doi.org/10.3390/mi12060631