Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes
Abstract
:1. Introduction
2. Pathogenic Fungi and Oomycetes
2.1. Infection Strategies
2.2. Invasive Growth of Hyphae
3. High-Throughput Screening (HTS)
3.1. Conventional HTS
3.2. Lab-on-a-Chip (LOC) Platforms for Tip-Growing Organism Screening
3.2.1. Hyphal Growth and Spore Monitoring
3.2.2. Single Cell Compartmentalization
3.2.3. Transport, Long-Term Culture, and Ease-of-Use of LOC Platforms
3.3. Summary
4. Protrusive Force Measurement and Electro-/Chemotaxis
4.1. Conventional Measurement of Protrusive Force
4.2. Microfluidic Platforms for Force Sensing
4.3. Microfluidic Platforms for Studying Electro- and Chemo Tactic Responses
4.4. Perspectives
Funding
Conflicts of Interest
References
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef]
- Geddes-McAlister, J.; Shapiro, R.S. New pathogens, new tricks: Emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann. N. Y. Acad. Sci. 2019, 1435, 57–78. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Money, N.P. Wishful Thinking of Turgor Revisited: The Mechanics of Fungal Growth. Fungal Genet. Biol. 1997, 21, 173–187. [Google Scholar] [CrossRef]
- Lew, R.R. How does a hypha grow? The biophysics of pressurized growth in fungi. Nature 2011, 9, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Money, N.P. Biomechanics of Invasive Hyphal Growth. In Biology of the Fungal Cell; Howard, R., Gow, N.A., Eds.; Springer: Berlin/Heidleberg, Germany, 2007; pp. 237–249. [Google Scholar]
- Walker, S.K.; Chitcholtan, K.; Yu, Y.; Christenhusz, G.M.; Garrill, A. Invasive hyphal growth: An F-actin depleted zone is associated with invasive hyphae of the oomycetes Achlya bisexualis and Phytophthora cinnamomic. Fungal Genet. Biol. 2006, 43, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Suei, S.; Garrill, A. An F-actin-depleted zone is present at the hyphal tip of invasive hyphae of Neurospora crassa. Protoplasma 2008, 232, 165–172. [Google Scholar] [CrossRef]
- Simpson, A.G.B.; Roger, A.J. The real ‘kingdoms’ of eukaryotes. Curr. Biol. 2004, 14, R693–R696. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, M. Tip Growth in Filamentous Fungi: A Road Trip to the Apex. Annu. Rev. Microbiol. 2013, 67, 587–609. [Google Scholar] [CrossRef] [Green Version]
- Kamoun, S.; Furzer, O.; Jones, J.D.G.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.D.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. Top 10 oomycete plant pathogens. Mol. Plant Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Gladieux, P.; Feurtey, A.; Hood, M.E.; Snirc, A.; Clavel, J.; Dutech, C.; Roy, M.; Giraud, T. The population biology of fungal invasions. Mol. Ecol. 2015, 24, 1969–1986. [Google Scholar] [CrossRef] [PubMed]
- Epstein, L.; Nicholson, R. Adhesion and Adhesives of Fungi and Oomycetes. In Biological Adhesives; Smith, A.M., Ed.; Springer: Cham, Switzerland, 2016; pp. 25–55. [Google Scholar]
- Osherov, N.; May, G.S. The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 2001, 199, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Fawke, S.; Doumane, M.; Schornack, S. Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiol. Mol. Biol. Rev. 2015, 79, 263–280. [Google Scholar] [CrossRef] [Green Version]
- Bastmeyer, M.; Deising, H.B.; Bechinger, C. Force Exertion in Fungal Infection. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 321–341. [Google Scholar] [CrossRef] [PubMed]
- Hertzberg, R.P.; Pope, A.J. High-throughput screening: New technology for the 21st century. Curr. Opin. Chem. Biol. 2000, 4, 445–451. [Google Scholar] [CrossRef]
- Henrich, C.J.; Beutler, J.A. Matching the power of high throughput screening to the chemical diversity of natural products. Nat. Prod. Rep. 2013, 30, 1284–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.S.; Samaranayake, L.P.; Seneviratne, C.J. In pursuit of the ideal antifungal agent for Candida infections: High-throughput screening of small molecules. Drug Discov. Today 2014, 19, 1721–1730. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, S.; Rajkumar, S.S.; Li, X.; Hurteau, G.J.; Shtutman, M.; Chaturvedi, V. Antifungal testing and high-throughput screening of compound library against geomyces destructans, the etiologic agent of geomycosis (WNS) in bats. PLoS ONE 2011, 6, 1–6. [Google Scholar] [CrossRef]
- Watamoto, T.; Egusa, H.; Sawase, T.; Yatani, H. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms. Front. Microbiol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, S.A.; Burgess, E.J.; Pairama, C.; Black, A.; Patrick, W.M.; Mitchell, I.; Perry, N.B.; Gerth, M.L. Matauranga-guided screening of New Zealand native plants reveals flavonoids from kanuka (Kunzea robusta) with anti-Phytophthora activity. J. R. Soc. N. Z. 2019, 6758, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Sanati Nezhad, A. Microfluidic platforms for plant cells studies. Lab Chip 2014, 14, 3262–3274. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xu, Z.; Aluru, M.R.; Dong, L. Plant chip for high-throughput phenotyping of Arabidopsis. Lab Chip 2014, 14, 1281–1293. [Google Scholar] [CrossRef]
- Zhou, W.; Le, J.; Chen, Y.; Cai, Y.; Hong, Z.; Chai, Y. Recent advances in microfluidic devices for bacteria and fungus research. TrAC-Trends Anal. Chem. 2019, 112, 175–195. [Google Scholar] [CrossRef]
- Burmeister, A.; Grünberger, A. Microfluidic cultivation and analysis tools for interaction studies of microbial cocultures. Curr. Opin. Biotechnol. 2020, 62, 106–115. [Google Scholar] [CrossRef]
- Hanson, K.L.; Nicolau, D.V.; Filipponi, L.; Wang, L.; Lee, A.P.; Nicolau, D.V. Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2006, 2, 1212–1220. [Google Scholar] [CrossRef]
- Held, M.; Edwards, C.; Nicolau, D.V. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011, 115, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Held, M.; Kašpar, O.; Edwards, C.; Nicolau, D.V. Intracellular mechanisms of fungal space searching in microenvironments. Proc. Natl. Acad. Sci. USA 2019, 116, 13543–13552. [Google Scholar] [CrossRef] [Green Version]
- Aleklett, K.; Ohlsson, P.; Bengtsson, M.; Hammer, E.C. Fungal foraging behaviour and hyphal space exploration in microstructured Soil Chips. ISME J. 2021, 15, 1782–1793. [Google Scholar] [CrossRef] [PubMed]
- Baranger, C.; Fayeulle, A.; Le Goff, A. Microfluidic monitoring of the growth of individual hyphae in confined environments. R. Soc. Open Sci. 2020, 7, 191535. [Google Scholar] [CrossRef]
- Grünberger, A.; Schöler, K.; Probst, C.; Kornfeld, G.; Hardiman, T.; Wiechert, W.; Kohlheyer, D.; Noack, S. Real-time monitoring of fungal growth and morphogenesis at single-cell resolution. Eng. Life Sci. 2017, 17, 86–92. [Google Scholar] [CrossRef]
- Demming, S.; Sommer, B.; Llobera, A.; Rasch, D.; Krull, R.; Büttgenbach, S. Disposable parallel poly(dimethylsiloxane) microbioreactor with integrated readout grid for germination screening of Aspergillus ochraceus. Biomicrofluidics 2011, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, T.; Smallwood, C.R.; Bredeweg, E.L.; Pomraning, K.R.; Plymale, A.E.; Baker, S.E.; Evans, J.E.; Kelly, R.T. Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms. Biomicrofluidics 2017, 11, 054104. [Google Scholar] [CrossRef]
- Marshall, J.; Qiao, X.; Baumbach, J.; Xie, J.; Dong, L.; Bhattacharyya, M.K. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.K.; Labiscsak, L.; Ahn, C.H.; Hong, C.I. Spiral-based microfluidic device for long-term time course imaging of Neurospora crassa with single nucleus resolution. Fungal Genet. Biol. 2016, 94, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Parashar, A.; Pandey, S. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis. Appl. Phys. Lett. 2011, 98, 1–3. [Google Scholar] [CrossRef]
- Ghanem, N.; Stanley, C.E.; Harms, H.; Chatzinotas, A.; Wick, L.Y. Mycelial Effects on Phage Retention during Transport in a Microfluidic Platform. Environ. Sci. Technol. 2019, 53, 11755–11763. [Google Scholar] [CrossRef] [PubMed]
- Schmieder, S.S.; Stanley, C.E.; Rzepiela, A.; Swaay, D.; Sabotič, J.; Nørrelykke, S.F.; DeMello, A.J.; Aebi, M.; Künzler, M. Bidirectional Propagation of Signals and Nutrients in Fungal Networks via Specialized Hyphae. Curr. Biol. 2019, 29, 217–228.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joensson, H.N.; Andersson Svahn, H. Droplet microfluidics-A tool for single-cell analysis. Angew. Chem. Int. Ed. 2012, 51, 12176–12192. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Qiao, X.; Bhattacharyya, M.K.; Dong, L. Microfluidic droplet encapsulation of highly motile single zoospores for phenotypic screening of an antioomycete chemical. Biomicrofluidics 2011, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Beneyton, T.; Wijaya, I.P.M.; Postros, P.; Najah, M.; Leblond, P.; Couvent, A.; Mayot, E.; Griffiths, A.D.; Drevelle, A. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, C.G.; Sanati, A.; Ghanbari, M.; Packirisamy, M.; Geitmann, A. A microfluidic platform for the investigation of elongation growth in pollen tubes. J. Micromech. Microeng. 2012, 22, 1–11. [Google Scholar] [CrossRef]
- Agudelo, C.G.; Nezhad, A.S.; Ghanbari, M.; Naghavi, M.; Packirisamy, M.; Geitmann, A. TipChip: A modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J. 2013, 73, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, M.; Nezhad, A.S.; Agudelo, C.G.; Packirisamy, M.; Geitmann, A. Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis. J. Biosci. Bioeng. 2014, 117, 504–511. [Google Scholar] [CrossRef]
- Nezhad, A.S.; Naghavi, M.; Packirisamy, M.; Bhat, R.; Geitmann, A. Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 2013, 13, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.M.; Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell Sci. 1996, 109, 713–726. [Google Scholar] [CrossRef] [PubMed]
- White, C.R.; Frangos, J.A. The shear stress of it all: The cell membrane and mechanochemical transduction. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1459–1467. [Google Scholar] [CrossRef]
- Geng, T.; Bredeweg, E.L.; Szymanski, C.J.; Liu, B.; Baker, S.E.; Orr, G.; Evans, J.E.; Kelly, R.T. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Munglani, G.; Vogler, H.; Ndinyanka Fabrice, T.; Shamsudhin, N.; Wittel, F.K.; Ringli, C.; Grossniklaus, U.; Herrmann, H.J.; Nelson, B.J. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device. Lab Chip 2017, 17, 82–90. [Google Scholar] [CrossRef]
- Sun, Y.; Tayagui, A.; Garrill, A.; Nock, V. A Monolithic Polydimethylsiloxane Platform for Zoospore Capture, Germination and Single Hypha Force Sensing. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 409–412. [Google Scholar]
- Sun, Y.; Tayagui, A.; Garrill, A.; Nock, V. Parallel screening of single zoospore germination and germ tube protrusive forces. In Proceedings of the 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Online, 4–8 October 2020; pp. 909–910. [Google Scholar]
- Sun, Y.; Tayagui, A.; Garrill, A.; Nock, V. Microfluidic platform for integrated compartmentalization of single zoospores, germination and measurement of protrusive force generated by germ tubes. Lab Chip 2020, 20, 4141–4151. [Google Scholar] [CrossRef]
- Xu, L.; Lee, H.; Jetta, D.; Oh, K.W. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS). Lab Chip 2015, 15, 3962–3979. [Google Scholar] [CrossRef]
- Millet, L.J.; Aufrecht, J.; Labbé, J.; Uehling, J.; Vilgalys, R.; Estes, M.L.; Miquel Guennoc, C.; Deveau, A.; Olsson, S.; Bonito, G.; et al. Increasing access to microfluidics for studying fungi and other branched biological structures. Fungal Biol. Biotechnol. 2019, 6, 1–14. [Google Scholar] [CrossRef]
- Brush, L.; Money, N.P. Invasive Hyphal Growth in Wangiella dermatitidis is induced by Stab Inoculation and Shows Dependence upon Melanin Biosynthesis. Fungal Genet. Biol. 1999, 28, 190–200. [Google Scholar] [CrossRef]
- Howard, R.J.; Ferrari, M.A.; Roacht, D.H.; Money, N.P. Penetration of Hard Substrates by a Fungus Employing Enormous Turgor Pressures. Proc. Natl. Acad. Sci. USA 1991, 88, 11281–11284. [Google Scholar] [CrossRef] [Green Version]
- Wright, G.D.; Arlt, J.; Poon, W.C.K.; Read, N.D. Optical tweezer micromanipulation of filamentous fungi. Fungal Genet. Biol. 2007, 44, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, G.D.; Arlt, J.; Poon, W.C.; Read, N.D. Experimentally manipulating fungi with optical tweezers. Mycoscience 2007, 48, 15–19. [Google Scholar] [CrossRef]
- Burnham, D.R.; Wright, G.D.; Read, N.D.; McGloin, D. Holographic and single beam optical manipulation of hyphal growth in filamentous fungi. J. Opt. A Pure Appl. Opt. 2007, 9, S172–S179. [Google Scholar] [CrossRef]
- Ravishankar, J.P.; Davis, C.M.; Davis, D.J.; MacDonald, E.; Makselan, S.D.; Millward, L.; Money, N.P. Mechanics of Solid Tissue Invasion by the Mammalian Pathogen Pythium insidiosum. Fungal Genet. Biol. 2001, 34, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Money, N.P.; Davis, C.M.; Ravishankar, J.P. Biomechanical evidence for convergent evolution of the invasive growth process among fungi and oomycete water molds. Fungal Genet. Biol. 2004, 41, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Johns, S.; Davis, C.M.; Money, N.P. Pulses in turgor pressure and water potential: Resolving the mechanics of hyphal growth. Microbiol. Res. 1999, 154, 225–231. [Google Scholar] [CrossRef]
- Minc, N.; Boudaoud, A.; Chang, F. Mechanical Forces of Fission Yeast Growth. Curr. Biol. 2009, 19, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Nezhad, A.S.; Naghavi, M.; Packirisamy, M.; Bhat, R.; Geitmann, A. Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proc. Natl. Acad. Sci. USA 2013, 110, 8093–8098. [Google Scholar] [CrossRef] [Green Version]
- Burri, J.T.; Vogler, H.; Läubli, N.F.; Hu, C.; Grossniklaus, U.; Nelson, B.J. Feeling the force: How pollen tubes deal with obstacles. New Phytol. 2018, 220, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanbari, M.; Packirisamy, M.; Geitmann, A. Measuring the growth force of invasive plant cells using Flexure integrated Lab-on-a-Chip (FiLoC). Technology 2018, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nock, V.; Tayagui, A.; Garrill, A. Elastomeric Micropillar Arrays for the Study of Protrusive Forces in Hyphal Invasion. In Proceedings of the 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Gyeongju, Korea, 25–29 October 2015; pp. 692–694. [Google Scholar]
- Tayagui, A.; Garrill, A.; Collings, D.A.; Nock, V. On-Chip Measurement of Protrusive Force Exerted by Single Hyphal Tips of Pathogenic Microorganisms. In Proceedings of the 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Dublin, Ireland, 9–13 October 2016; pp. 150–151. [Google Scholar]
- Tayagui, A.; Sun, Y.; Collings, D.A.; Garrill, A.; Nock, V. An elastomeric micropillar platform for the study of protrusive forces in hyphal invasion. Lab Chip 2017, 17, 3643–3653. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Tayagui, A.; Shearer, H.; Garrill, A.; Nock, V. A Microfluidic Platform with Integrated Sensing Pillars for Protrusive Force Measurements on Neurospora crassa. In Proceedings of the 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, UK, 21–25 January 2018; pp. 1116–1119. [Google Scholar]
- Sun, Y.; Tayagui, A.; Garrill, A.; Nock, V. Fabrication of In-Channel High-Aspect Ratio Sensing Pillars for Protrusive Force Measurements on Fungi and Oomycetes. J. Microelectromech. Syst. 2018, 27, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, A.; Nock, V.; Blaikie, R.J.; Chase, J.G.; Chen, X.; Hann, C.E.; Wang, W. Force pattern characterisation of Caenorhabditis elegans in motion. Int. J. Comput. Appl. Technol. 2010, 39, 137–144. [Google Scholar] [CrossRef]
- Ghanbari, A.; Nock, V.; Johari, S.; Blaikie, R.; Chen, X.; Wang, W. A micropillar-based on-chip system for continuous force measurement of C. elegans. J. Micromech. Microeng. 2012, 22, 095009. [Google Scholar] [CrossRef]
- Johari, S.; Nock, V.; Alkaisi, M.M.; Wang, W. On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. Lab Chip 2013, 13, 1699–1707. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Tu, L.; Huang, L.; Zhu, T.; Nock, V.; Yu, E.; Liu, X.; Wang, W. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments. Biomicrofluidics 2015, 9, 014123. [Google Scholar] [CrossRef] [Green Version]
- Garrill and Davies, J.M. Patch clamping fungal membranes: A new perspective on ion transport. Mycol. Res. 1994, 98, 257–263. [Google Scholar] [CrossRef]
- Morris, B.M.; Gow, N.A.R. Mechanism of electrotaxis of zoospores of phytopathogenic fungi. Phytopathology 1993, 83, 877–882. [Google Scholar] [CrossRef]
- Lundy, S.D.; Payne, R.J.; Giles, K.R.; Garrill, A. Heavy metals have different effects on mycelial morphology of Achlya bisexualis as determined by fractal geometry. FEMS Microbiol. Lett. 2001, 201, 259–263. [Google Scholar] [CrossRef]
- Gadd, G.M. Interactions of fungi with toxic metals. New Phytol. 1993, 124, 25–60. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Bioremediation Options for Heavy Metal Pollution. J. Health Pollut. 2019, 9, 191203. [Google Scholar] [CrossRef] [Green Version]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.I.; Haswell, S.; Gibson, I. Lab-on-a-chip or Chip-in-a-lab: Challenges of Commercialization Lost in Translation. Procedia Technol. 2015, 20, 54–59. [Google Scholar] [CrossRef] [Green Version]
Device Structure | Organisms | Spores/Mature Hyphae | Device Function | Refs |
---|---|---|---|---|
Mazelike micro-confined networks | Fungi: Pycnoporus cinnabarinus, Neurospora crassa | Hyphae | Testing the space searching ability of fungal hyphae | [28,29] |
Fungus: Neurospora crassa | Hyphae | Monitoring how constraining geometries determine the intracellular processes responsible for fungal growth | [30] | |
Fungi: Coprinellus angulatus, Psilocybe cf. subviscida, Gymnopus confluens, Tricholomella constricta, Leucopaxillus gentianeus, Mycetinis scorodonius, Leucoagaricus leucothites | Hyphae | Screening different responses between species in terms of foraging range and persistence, spatial exploration, and the ability to pass obstacles | [31] | |
Parallel microchannels | Fungi: Talaromyces helices, Neurospora crassa | Hyphae | Monitoring the growth of hyphae under fine control of nutrient and water supply | [32] |
Parallel cultivation microchamber | Fungi: Penicillium chrysogenum, Fusarium virguliforme | Spores to hyphae | Monitoring fungal morphogenesis during different stages of the life cycle | [33,36] |
Fungus: Aspergillus ochraceus | Spores | Monitoring germination behavior of spores for at differing pH and temperature | [34] | |
Oomycete: Phytophthora sojae | Spores | Observing root-pathogen physicochemical interactions | [38] | |
Fungus: Coprinopsis cinerea; Oomycete: Pythium ultimum | Hyphae | Analyzing the mycelial retention of phages | [39] | |
Fungus: Coprinopsis cinerea | Hyphae | Monitoring the nutrient distribution of fungi and their defense response against fungivores nematode | [40] | |
Microchamber array with microvalves | Fungus: Yarrowia lipolytica | Yeast cells | Parallel screening of yeast cell growth and dimorphic yeast dynamics | [35] |
2D Spiral Channel | Fungus: Neurospora crassa | Hyphae | Monitoring single-nucleus dynamics | [37] |
Droplet microfluidics | Oomycete: Phytophthora sojae | Spores | Encapsulating single motile zoospores into each droplet, and tracking germination and germ tube growth of zoospores at different metalaxyl concentrations | [42] |
Fungus: Aspergillus niger | Spores | Encapsulating single zoospores, incubation, and sorting base on secreted enzyme activities for HTS | [43] | |
TipChip, distribution chamber access to the entrances of the microchannels | Plant: Camellia japonica pollen | Pollen grains | Hydrodynamically trapping pollen grains at the entrance of microchannels, and guiding pollen tube growth into channels. Monitoring germination and growth rates of pollen tubes exposed to different geometrical conditions | [44,45,46] |
Plant: Camellia japonica pollen | Pollen grains | Testing the Young’s modulus of the cell wall in a longitudinal direction using a bending force by fluid loading | [47] | |
Channel array with a single normally-open microvalve | Fungus: Neurospora crassa | Spores | Compartmentalizing conidia after hydrodynamic trapping. Analyzing hyphal growth in various glucose concentrations and channel geometry conditions, analyzing nuclear migration and gene expression dynamics | [50] |
Plant: Lilium longiflorum pollen | Pollen grains | Testing mechanical properties of pollen tubes using soft compression created by a second membrane valve | [51] | |
A channel array with separately controlled normally-closed microvalves | Oomycete Achlya bisexualis | Spores | Hydrodynamic trapping and hermetic fluidic compartmentalizing single zoospores in trap sites. Monitoring spore germination and germ tube growth | [52,53,54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Tayagui, A.; Sale, S.; Sarkar, D.; Nock, V.; Garrill, A. Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. Micromachines 2021, 12, 639. https://doi.org/10.3390/mi12060639
Sun Y, Tayagui A, Sale S, Sarkar D, Nock V, Garrill A. Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. Micromachines. 2021; 12(6):639. https://doi.org/10.3390/mi12060639
Chicago/Turabian StyleSun, Yiling, Ayelen Tayagui, Sarah Sale, Debolina Sarkar, Volker Nock, and Ashley Garrill. 2021. "Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes" Micromachines 12, no. 6: 639. https://doi.org/10.3390/mi12060639
APA StyleSun, Y., Tayagui, A., Sale, S., Sarkar, D., Nock, V., & Garrill, A. (2021). Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. Micromachines, 12(6), 639. https://doi.org/10.3390/mi12060639