A-π-D-π-A-Based Small Molecules for OTFTs Containing Diketopyrrolopyrrole as Acceptor Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Organic Compounds
2.2.1. Synthesis of 3,6-Di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (3)
2.2.2. Synthesis of 2,5-Bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (4)
2.2.3. Synthesis of 3-(5-Bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (5)
2.2.4. Synthesis of 2,5-Bis(2-ethylhexyl)-3-(thiophen-2-yl)-6-(5-((trimethylsilyl)ethynyl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (6)
2.2.5. Synthesis of 2,5-Bis(2-ethylhexyl)-3-(5-ethynylthiophen-2-yl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (7)
2.2.6. Synthesis of 5,7-Dibromo-2,3-dihydrothieno[3,4-b][1,4]dioxine (9)
2.2.7. Synthesis of 6,6′-((Thiophene-2,5-diylbis(ethyne-2,1-diyl))bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (TDPP-T)
2.2.8. Synthesis of 6,6′-(((2,3-Dihydrothieno[3,4-b][1,4]dioxine-5,7-diyl)bis(ethyne-2,1-diyl))bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (TDPP-EDOT)
2.3. Measurements
3. Results and Discussions
3.1. Optical and Electrochemical Properties of the TDPP-T and TDPP-EDOT
3.2. Thermal Properties of the TDPP-T and TDPP-EDOT
3.3. OTFT Characterization of the TDPP-T and TDPP-EDOT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Cho, H.J.; Cho, N.S.; Hwang, D.H.; Kang, J.M.; Lim, E.; Lee, J.I.; Shim, H.K. Enhanced efficiency of polyfluorene derivatives: Organic—Inorganic hybrid polymer light-emitting diodes. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 2943–2954. [Google Scholar] [CrossRef]
- Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Rotzoll, R.; Mohapatra, S.; Olariu, V.; Wenz, R.; Grigas, M.; Dimmler, K.; Shchekin, O.; Dodabalapur, A. Radio frequency rectifiers based on organic thin-film transistors. Appl. Phys. Lett. 2006, 88, 123502. [Google Scholar] [CrossRef]
- Kato, Y.; Sekitani, T.; Noguchi, Y.; Yokota, T.; Takamiya, M.; Sakurai, T.; Someya, T. Large-area flexible ultrasonic imaging system with an organic transistor active matrix. IEEE Trans. Electron Devices 2010, 57, 995–1002. [Google Scholar] [CrossRef]
- Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 2007, 107, 1296–1323. [Google Scholar] [CrossRef]
- Tsao, H.N.; Cho, D.M.; Park, I.; Hansen, M.R.; Mavrinskiy, A.; Yoon, D.Y.; Graf, R.; Pisula, W.; Spiess, H.W.; Müllen, K. Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 2011, 133, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hurhangee, M.; Nikolka, M.; Zhang, W.; Kirkus, M.; Neophytou, M.; Cryer, S.J.; Harkin, D.; Hayoz, P.; Abdi-Jalebi, M. Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Field-Effect Transistors. Adv. Mater. 2017, 29, 1702523. [Google Scholar] [CrossRef] [Green Version]
- Fei, Z.; Han, Y.; Gann, E.; Hodsden, T.; Chesman, A.S.; McNeill, C.R.; Anthopoulos, T.D.; Heeney, M. Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications. J. Am. Chem. Soc. 2017, 139, 8552–8561. [Google Scholar] [CrossRef] [Green Version]
- Qu, S.; Tian, H. Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem. Commun. 2012, 48, 3039–3051. [Google Scholar] [CrossRef]
- Gumyusenge, A.; Tran, D.T.; Luo, X.; Pitch, G.M.; Zhao, Y.; Jenkins, K.A.; Dunn, T.J.; Ayzner, A.L.; Savoie, B.M.; Mei, J. Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science 2018, 362, 1131–1134. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, S.; Wang, G.-J.N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V.R.; To, J.W. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59–64. [Google Scholar] [CrossRef]
- He, Y.; Aïch, B.R.; Lu, J.; Alem, S.; Lang, S.; Movileanu, R.; Baribeau, J.-M.; Tao, Y. A diketopyrrolopyrrole conjugated polymer based on 4, 4′-difluoro-2, 2′-bithiophene for organic thin-film transistors and organic photovoltaics. Thin Solid Film. 2020, 711, 138300. [Google Scholar] [CrossRef]
- Stalder, R.; Mei, J.; Graham, K.R.; Estrada, L.A.; Reynolds, J.R. Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chem. Mater. 2014, 26, 664–678. [Google Scholar] [CrossRef]
- Wu, H.-C.; Hung, C.-C.; Hong, C.-W.; Sun, H.-S.; Wang, J.-T.; Yamashita, G.; Higashihara, T.; Chen, W.-C. Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable field-effect transistors. Macromolecules 2016, 49, 8540–8548. [Google Scholar] [CrossRef]
- Shaker, M.; Park, B.; Lee, S.; Lee, K. Face-on oriented thermolabile Boc-isoindigo/thiophenes small molecules: From synthesis to OFET performance. Dyes Pigm. 2020, 172, 107784. [Google Scholar] [CrossRef]
- Yuen, J.D.; Kumar, R.; Zakhidov, D.; Seifter, J.; Lim, B.; Heeger, A.J.; Wudl, F. Ambipolarity in Benzobisthiadiazole-Based Donor—Acceptor Conjugated Polymers. Adv. Mater. 2011, 23, 3780–3785. [Google Scholar] [CrossRef]
- Jones, B.A.; Facchetti, A.; Wasielewski, M.R.; Marks, T.J. Effects of arylene diimide thin film growth conditions on n-channel OFET performance. Adv. Funct. Mater. 2008, 18, 1329–1339. [Google Scholar] [CrossRef]
- Wang, Y.; Hasegawa, T.; Matsumoto, H.; Mori, T.; Michinobu, T. High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers. Adv. Mater. 2018, 30, 1707164. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hasegawa, T.; Matsumoto, H.; Michinobu, T. Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding. J. Am. Chem. Soc. 2019, 141, 3566–3575. [Google Scholar] [CrossRef]
- Ha, J.-J.; Jeon, C.W.; Kang, P.; Kang, I.; Nam, S.Y.; Kim, Y.-H. Synthesis and characterization of quinquethiophene end capped anthracene for solution processed OTFT. Synth. Met. 2013, 180, 32–37. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Xu, X.; Liu, M.; He, Y.; Murtaza, I.; Zhang, D.; Yao, C.; Wang, Y.; Meng, H. Thermal and optical modulation of the carrier mobility in OTFTs based on an azo-anthracene liquid crystal organic semiconductor. ACS Appl. Mater. Interfaces 2017, 9, 7305–7314. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, L.; Murtaza, I.; Liang, X.; Meng, H.; Huang, W. A thermally stable anthracene derivative for application in organic thin film transistors. Org. Electron. 2017, 43, 105–111. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, S.O.; Jung, S.O.; Yi, M.-H.; Kim, Y.-H.; Kwon, S.-K. Synthesis and characterization of naphthalene end-capped divinylbenzene for OTFT. J. Electron. Mater. 2009, 38, 2000–2005. [Google Scholar] [CrossRef]
- Tian, H.; Chen, Y.; Li, W.; Yan, D.; Geng, Y.; Wang, F. Synthesis, characterization and semiconducting properties of oligo (2,6-naphthalene) s. Org. Electron. 2014, 15, 1088–1095. [Google Scholar] [CrossRef]
- Jang, Y.J.; Lim, B.T.; Yoon, S.B.; Choi, H.J.; Ha, J.U.; Chung, D.S.; Lee, S.-G. A small molecule composed of anthracene and thienothiophene devised for high-performance optoelectronic applications. Dyes Pigm. 2015, 120, 30–36. [Google Scholar] [CrossRef]
- Vegiraju, S.; Huang, D.-Y.; Priyanka, P.; Li, Y.-S.; Luo, X.-L.; Hong, S.-H.; Ni, J.-S.; Tung, S.-H.; Wang, C.-L.; Lien, W.-C. High performance solution-processable tetrathienoacene (TTAR) based small molecules for organic field effect transistors (OFETs). Chem. Commun. 2017, 53, 5898–5901. [Google Scholar] [CrossRef]
- Mutkins, K.; Gui, K.; Aljada, M.; Schwenn, P.E.; Namdas, E.B.; Burn, P.L.; Meredith, P. A solution processable fluorene-benzothiadiazole small molecule for n-type organic field-effect transistors. Appl. Phys. Lett. 2011, 98, 75. [Google Scholar] [CrossRef] [Green Version]
- Sonar, P.; Singh, S.P.; Leclere, P.; Surin, M.; Lazzaroni, R.; Lin, T.T.; Dodabalapur, A.; Sellinger, A. Synthesis, characterization and comparative study of thiophene–benzothiadiazole based donor–acceptor–donor (D–A–D) materials. J. Mater. Chem. 2009, 19, 3228–3237. [Google Scholar] [CrossRef]
- Shaik, B.; Han, J.-H.; Song, D.J.; Kang, H.-M.; Kim, Y.B.; Park, C.E.; Lee, S.-G. Synthesis of donor–acceptor copolymer using benzoselenadiazole as acceptor for OTFT. RSC Adv. 2016, 6, 4070–4076. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, J.; Zhang, J.; Li, P.; Ma, J.; Wang, X.; Lu, H.; Qiu, L. A phthalimide-and diketopyrrolopyrrole-based A 1–π–A 2 conjugated polymer for high-performance organic thin-film transistors. Polym. Chem. 2015, 6, 418–425. [Google Scholar] [CrossRef]
- Karabay, L.C.; Karabay, B.; Karakoy, M.S.; Cihaner, A. Effect of furan, thiophene and selenophene donor groups on benzoselenadiazole based donor-acceptor-donor systems. J. Electroanal. Chem. 2016, 780, 84–89. [Google Scholar] [CrossRef]
- Pai, C.-L.; Liu, C.-L.; Chen, W.-C.; Jenekhe, S.A. Electronic structure and properties of alternating donor–acceptor conjugated copolymers: 3,4-Ethylenedioxythiophene (EDOT) copolymers and model compounds. Polymer 2006, 47, 699–708. [Google Scholar] [CrossRef]
- Kawabata, K.; Osaka, I.; Nakano, M.; Takemura, N.; Koganezawa, T.; Takimiya, K. Thienothiophene-2,5-Dione-Based Donor—Acceptor Polymers: Improved Synthesis and Influence of the Donor Units on Ambipolar Charge Transport Properties. Adv. Electron. Mater. 2015, 1, 1500039. [Google Scholar] [CrossRef]
- Hwang, K.; Lee, M.-H.; Kim, J.; Kim, Y.-J.; Kim, Y.; Hwang, H.; Kim, I.-B.; Kim, D.-Y. 3,4-Ethylenedioxythiophene-based isomer-free quinoidal building block and conjugated polymers for organic field-effect transistors. Macromolecules 2020, 53, 1977–1987. [Google Scholar] [CrossRef]
- Kumar, C.V.; Cabau, L.; Koukaras, E.N.; Sharma, G.D.; Palomares, E. Synthesis, optical and electrochemical properties of the A–π-D–π-A porphyrin and its application as an electron donor in efficient solution processed bulk heterojunction solar cells. Nanoscale 2015, 7, 179–189. [Google Scholar] [CrossRef]
- Gao, H.; Li, Y.; Wang, L.; Ji, C.; Wang, Y.; Tian, W.; Yang, X.; Yin, L. High performance asymmetrical push–pull small molecules end-capped with cyanophenyl for solution-processed solar cells. Chem. Commun. 2014, 50, 10251–10254. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Qian, X.; Jiang, Y.; He, Y.; Hang, Y.; Hou, L. Ethynylene-linked planar rigid organic dyes based on indeno [1,2-b] indole for efficient dye-sensitized solar cells. Dyes Pigm. 2017, 141, 93–102. [Google Scholar] [CrossRef]
- Roncali, J.; Blanchard, P.; Frère, P. 3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J. Mater. Chem. 2005, 15, 1589–1610. [Google Scholar] [CrossRef]
- Huseynova, G.; Hyun Kim, Y.; Lee, J.-H.; Lee, J. Rising advancements in the application of PEDOT: PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics. J. Inf. Disp. 2020, 21, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Colladet, K.; Fourier, S.; Cleij, T.J.; Lutsen, L.; Gelan, J.; Vanderzande, D.; Huong Nguyen, L.; Neugebauer, H.; Sariciftci, S.; Aguirre, A. Low band gap donor− acceptor conjugated polymers toward organic solar cells applications. Macromolecules 2007, 40, 65–72. [Google Scholar] [CrossRef]
- Chan, K.-Y.; Bunte, E.; Stiebig, H.; Knipp, D. Influence of low temperature thermal annealing on the performance of microcrystalline silicon thin-film transistors. J. Appl. Phys. 2007, 101, 074503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, Z.; Bi, S.; Asare-Yeboah, K. Phase segregation controlled semiconductor crystallization for organic thin film transistors. J. Sci. Adv. Mater. Devices 2020, 5, 151–163. [Google Scholar] [CrossRef]
- Kang, J.; Shin, N.; Jang, D.Y.; Prabhu, V.M.; Yoon, D.Y. Structure and properties of small molecule− polymer blend semiconductors for organic thin film transistors. J. Am. Chem. Soc. 2008, 130, 12273–12275. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Bi, S.; Chen, J.; Li, D. Conjugated polymer controlled morphology and charge transport of small-molecule organic semiconductors. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ohe, T.; Kuribayashi, M.; Yasuda, R.; Tsuboi, A.; Nomoto, K.; Satori, K.; Itabashi, M.; Kasahara, J. Solution-processed organic thin-film transistors with vertical nanophase separation. Appl. Phys. Lett. 2008, 93, 286. [Google Scholar] [CrossRef]
Compound | λabs/nm | Eg a (eV) | HOMO (eV) b | LUMO (eV) c | Td (°C) d | Tm (°C) e | |
---|---|---|---|---|---|---|---|
Solution | Film | ||||||
TDPP-T | 391, 591 | 376, 607,630 | 1.73 | −5.44 | −3.71 | 395 | 201 |
TDPP-EDOT | 410, 594 | 370, 415,663 | 1.70 | −5.31 | −3.61 | 383 | 211 |
µAVG (cm2/Vs) | VTH (V) | On/Off Ratio | ||||
---|---|---|---|---|---|---|
TDPP-T | TDPP-EDOT | TDPP-T | TDPP-EDOT | TDPP-T | TDPP-EDOT | |
As cast | (5.44 ± 0.11) × 10−6 | (4.13 ± 0.16) × 10−6 | −5.0 | 42.6 | 13.2 | 3.5 |
Ann 100 °C | (3.61 ± 0.08) × 10−5 | (1.26 ± 0.06) × 10−5 | −1.5 | −2.5 | 23.1 | 73.4 |
Ann 150 °C | (3.11 ± 0.08) × 10−4 | (2.63 ± 0.12) × 10−4 | −11.5 | 1.4 | 326 | 1060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaik, B.; Khan, M.; Shaik, M.R.; Sharaf, M.A.F.; Sekou, D.; Lee, S.-G. A-π-D-π-A-Based Small Molecules for OTFTs Containing Diketopyrrolopyrrole as Acceptor Units. Micromachines 2021, 12, 817. https://doi.org/10.3390/mi12070817
Shaik B, Khan M, Shaik MR, Sharaf MAF, Sekou D, Lee S-G. A-π-D-π-A-Based Small Molecules for OTFTs Containing Diketopyrrolopyrrole as Acceptor Units. Micromachines. 2021; 12(7):817. https://doi.org/10.3390/mi12070817
Chicago/Turabian StyleShaik, Baji, Mujeeb Khan, Mohammed Rafi Shaik, Mohammed A.F. Sharaf, Doumbia Sekou, and Sang-Gyeong Lee. 2021. "A-π-D-π-A-Based Small Molecules for OTFTs Containing Diketopyrrolopyrrole as Acceptor Units" Micromachines 12, no. 7: 817. https://doi.org/10.3390/mi12070817
APA StyleShaik, B., Khan, M., Shaik, M. R., Sharaf, M. A. F., Sekou, D., & Lee, S. -G. (2021). A-π-D-π-A-Based Small Molecules for OTFTs Containing Diketopyrrolopyrrole as Acceptor Units. Micromachines, 12(7), 817. https://doi.org/10.3390/mi12070817