A Prototype Sensor System Using Fabricated Piezoelectric Braided Cord for Work-Environment Measurement during Work from Home
Abstract
:1. Introduction
2. Fabrication of Piezoelectric PLLA Embroidery Blade
2.1. Piezoelectric PLLA Braided Cord
2.2. Finite Element Method (FEM) Calculation
2.3. Trial Production of Piezoelectric PLLA Embroidery Blade
3. Experiments
3.1. Preliminary Experiment
3.2. Experiment in Environment Close to Actual One
4. Results and Discussion
4.1. Experiment in Environment Close to Actual One
4.2. Stress Check
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hafner, M.; Stepanek, M.; Taylor, J.; Troxel, W.; Stolk, C. Why Sleep Matters in the Economic Costs of Insufficient Sleep; RAND Corporation: Cambridge, UK, 2016. [Google Scholar]
- OECD Gender Data Portal; United Nations: New York, NY, USA, 2019.
- Tajitsu, Y.; Kawase, Y.; Katsuya, K.; Tamura, M.; Sakamoto, K.; Kawahara, K.; Harada, Y.; Kondo, T.; Imada, Y. New Wearable Sensor in the Shape of a Braided Cord (Kumihimo). IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 772–777. [Google Scholar] [CrossRef]
- Tajitsu, Y. Piezoelectric “Kumihimo-gumi” Sensor Fabricated by Braiding Method Using Piezoelectric Poly-L-lactic Acid Fiber. Ferroelectrics 2020, 557, 43–57. [Google Scholar] [CrossRef]
- Tajitsu, Y. Development of E-textile Sewn Together with Embroidered Fabric Having Motion-Sensing Function Using Piezoelectric Braided Cord for Embroidery. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1644–1649. [Google Scholar] [CrossRef]
- Galetti, P.; DeRossi, D.; DeReggi, A. Medical Applications of Piezoelectric Polymers; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Nalwa, H. Ferroelectric Polymers; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Fukada, E. History and Recent Progress in Piezoelectric Polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 1277–1290. [Google Scholar] [CrossRef]
- Tajitsu, Y. Development of Electric Control Catheter and Tweezers for Thrombosis Sample in Blood Vessels Using Piezoelectric Polymeric Fibers. Polym. Adv. Technol. 2006, 17, 907–913. [Google Scholar] [CrossRef]
- Tajitsu, Y. Piezoelectricity of Chiral Polymeric Fiber and Its Application in Biomedical Engineering. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Carpi, F.; Smela, E. Biomedical Applications of Electroactive Polymer Actuators; Wiley: Chichester, UK, 2009. [Google Scholar]
- Okuzaki, H.; Asaka, K. Soft Actuators; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Tajitsu, Y. Industrial Applications of Poly(lactic acid). Adv. Polym. Sci. 2018, 282, 159–176. [Google Scholar]
- Tajitsu, Y. Basic Study on Controlling Piezoelectric Motion of Chiral Polymeric Fiber. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1050–1055. [Google Scholar] [CrossRef]
- Sawano, M.; Tahara, K.; Orita, Y.; Nakayama, M.; Tajitsu, Y. New Design of Actuator Using Shear Piezoelectricity of A Chiral Polymer And Prototype Device. Polym. Int. 2010, 59, 365–370. [Google Scholar] [CrossRef]
- Tajitsu, Y. Fundamental Study on Improvement of Piezoelectricity of Poly(l-Lactic Acid) and Its Application to Film Actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 1625–1629. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Onogi, T.; Onishi, K.; Inagaki, T.; Tajitsu, Y. High Piezoelectric Performance of Poly(lactic acid) Film manufactured by Solid-state Extrusion. Jpn. J. Appl. Phys. 2014, 53, 09PC02. [Google Scholar] [CrossRef]
- Hayashi, S.; Kamimura, Y.; Tsukamoto, N.; Imoto, K.; Sugitani, H.; Kondo, T.; Imada, Y.; Nakiri, T.; Tajitsu, Y. Piezoelectric Characteristics of Three-dimensional Solid Object of Poly(L-lactide) Fabricated by Three-dimensional Printing. Jpn. J. Appl. Phys. 2015, 54, 10NF01. [Google Scholar] [CrossRef]
- Tanimoto, K.; Saihara, S.; Adachi, Y.; Harada, Y.; Shiomi, Y.; Tajitsu, Y. Shear Piezoelectricity of Optically Active Polysuccinimides. Jpn. J. Appl. Phys. 2015, 54, 10NF02. [Google Scholar] [CrossRef]
- Tajitsu, Y.; Suehiro, A.; Tsunemine, K.; Katsuya, K.; Kawaguchi, Y.; Kuriwaki, Y.; Sugino, Y.; Nishida, H.; Kitamura, M.; Omori, K. Application of Piezoelectric Braided Cord to Dysphagia-detecting System. Jpn. J. Appl. Phys. 2018, 57, 11UG02. [Google Scholar] [CrossRef]
- Tajitsu, Y.; Takarada, J.; Takatani, K.; Yanagimoto, H.; Toguchi, S.; Nakanishi, R.; Shiomi, S.; Machino, S.; Tanaka, S.; Nakiri, T.; et al. Application of a Piezoelectric Braided Cord to Sense Vital Signs During Sleep. Jpn. J. Appl. Phys. 2020, 59, SPPD06. [Google Scholar] [CrossRef]
- Mitsuzuka, M.; Kinbara, Y.; Fukuhara, M.; Nakahara, M.; Nakano, T.; Takarada, J.; Wang, K.; Mori, Y.; Kageoka, T.; Tawa, T.; et al. Relationship between Photoelasticity of Polyurethane and Dielectric Anisotropy of Diisocyanate, and Application of High-Photoelasticity Polyurethane to Tactile Sensor for Robot Hands. Polymers 2021, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Brown, C. Beaded Embroidery Stitching; C&T Publishing: Boston, MA, USA, 2019. [Google Scholar]
- Maison, L. Haute Couture Embroidery; Thames & Hudson: London, UK, 2020. [Google Scholar]
- Nonoue, S.; Mashita, M.; Haraki, S.; Mikami, A.; Adachi, H.; Yatani, H.; Yoshida, A.; Taniike, M.; Kato, T. Inter-scorer Reliability of Seep Assessment Using EEG and EOG Recording System in Comparison to Polysomnography. Sleep Biol. Rhythm. 2017, 15, 39–48. [Google Scholar] [CrossRef]
- Furihata, R.; Saitoha, K.; Suzuki, M.; Jike, M.; Kaneita, Y.; Ohida, T.; Buysse, D.; Uchiyama, M. A Composite Measure of Sleep Health Is Associated with Symptoms of Depression among Japanese Female Hospital Nurses. Comprehensive Psychiatry 2012, 97, 152151. [Google Scholar] [CrossRef] [PubMed]
- Reiwa, E. The Social Security System and People’s Work Styles; Annual Health, Labour and Welfare Report; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2018. (In Japanese)
- Robertson, D.; Phillip, L.; Polinsky, R. Primer on the Autonomic Nervous System; Academic Press: London, UK, 2015. [Google Scholar]
- Japan Society of Neurovegetative Research; Ziritsushinkeikino: Bunkodo, Tokyo, Japan, 2015. (In Japanese)
- Zambotti, M.; Trinder, J.; Silvani, A.; Colrain, I.; Baker, F. Dynamic Coupling between the Central and Autonomic Nervous Systems during Sleep. A review. Neurosci. Biobehav. Rev. 2018, 90, 84–103. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajitsu, Y.; Takarada, J.; Takatani, K.; Nakanishi, R.; Yanagimoto, H.; Shiomi, S.; Nakagawa, I.; Kawahara, I.; Nakiri, T.; Shimda, S.; et al. A Prototype Sensor System Using Fabricated Piezoelectric Braided Cord for Work-Environment Measurement during Work from Home. Micromachines 2021, 12, 966. https://doi.org/10.3390/mi12080966
Tajitsu Y, Takarada J, Takatani K, Nakanishi R, Yanagimoto H, Shiomi S, Nakagawa I, Kawahara I, Nakiri T, Shimda S, et al. A Prototype Sensor System Using Fabricated Piezoelectric Braided Cord for Work-Environment Measurement during Work from Home. Micromachines. 2021; 12(8):966. https://doi.org/10.3390/mi12080966
Chicago/Turabian StyleTajitsu, Yoshiro, Jun Takarada, Kohei Takatani, Riku Nakanishi, Hiroki Yanagimoto, Seita Shiomi, Isamu Nakagawa, Ikuo Kawahara, Takuo Nakiri, Saki Shimda, and et al. 2021. "A Prototype Sensor System Using Fabricated Piezoelectric Braided Cord for Work-Environment Measurement during Work from Home" Micromachines 12, no. 8: 966. https://doi.org/10.3390/mi12080966
APA StyleTajitsu, Y., Takarada, J., Takatani, K., Nakanishi, R., Yanagimoto, H., Shiomi, S., Nakagawa, I., Kawahara, I., Nakiri, T., Shimda, S., Shimura, Y., Nonomura, T., Kojima, K., Ikeguch, A., Okayama, K., Sakai, T., Morioka, Y., Takahashi, M., Sugiyama, K., ... Takeshita, K. (2021). A Prototype Sensor System Using Fabricated Piezoelectric Braided Cord for Work-Environment Measurement during Work from Home. Micromachines, 12(8), 966. https://doi.org/10.3390/mi12080966