Pool Boiling Performance of Multilayer Micromeshes for Commercial High-Power Cooling
Abstract
:1. Introduction
2. Fabrication and Experiments
2.1. Fabrication of MCMs
2.2. Experiments
2.3. Data Reduction
3. Results and Discussion
3.1. Surface Characterizations of MCMs
3.2. Boiling Performance Enhancement
3.3. Bubble Generation Visualization
3.4. Comparison with Other Samples
4. Conclusions
- (1)
- The multilayer micromesh surfaces exhibit significant enhancement in pool boiling heat transfer, including the CHF, HTC, and ONB, compared to a plain copper plate. The micropores formed by multilayer micromeshes enhance the heat transfer performance through an enlarged surface area, increasing easily activated nucleation sites and improving capillary wicking performance.
- (2)
- Increasing the layers of micromeshes can decrease the size of the micropores, increase the density of nucleation sites, and improve capillary wicking performance, further increasing the HTC and delaying the CHF of the samples. MCM-5 exhibited the optimum boiling performance in this study, with the highest CHF of 207.5 W/cm2 and the highest HTC of 15.6 W/ (cm2·K).
- (3)
- When compared to other modifications, MCM-5, with a remarkable boiling performance (high CHF and HTC), low cost, simplicity, and high durability, shows industrial prospects for commercial compact microelectronics cooling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CHF | critical heat flux, W/cm2 |
HTC (h) | heat transfer coefficient, W/(cm2·K) |
ONB | onset of nucleate boiling |
MCM | multiplayer copper micromesh |
CP | copper plate |
q″ | heat flux, W/cm2 |
dT/dx | temperature gradient |
Ti | temperature of the thermocouples, (i = 1, 2), °C |
ΔT | wall superheat, °C |
L | distance from T1 to copper block top surface, mm |
δ | thickness of the solder layer, mm |
δs | thickness of the sample, mm |
Tsat | water saturation temperature, 100 °C |
Tw | wall temperature, °C |
kcu | thermal conductivity of copper, W/(m·K) |
ks | thermal conductivity of solder, W/(m·K) |
References
- Tang, H.; Tang, Y.; Wan, Z.; Li, J.; Yuan, W.; Lu, L.; Li, Y.; Tang, K. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Appl. Energy 2018, 223, 383–400. [Google Scholar] [CrossRef]
- Chen, G.; Tang, Y.; Wan, Z.; Zhong, G.; Tang, H.; Zeng, J. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics. Int. Commun. Heat Mass Transf. 2019, 100, 12–19. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Sun, Y.; Li, J.; Zeng, J.; Yuan, W.; Tang, Y. Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe. Renew. Energy 2019, 135, 1133–1143. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; de Castro, C.A.N. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew. Sust. Energy Rev. 2017, 78, 821–833. [Google Scholar] [CrossRef]
- Kalani, A.; Kandlikar, S. Enhanced Pool Boiling With Ethanol at Subatmospheric Pressures for Electronics Cooling. J. Heat Transf. 2013, 135, 111002. [Google Scholar] [CrossRef] [Green Version]
- Mori, S.; Utaka, Y. Critical heat flux enhancement by surface modification in a saturated pool boiling: A review. Int. J. Heat Mass Transf. 2017, 108, 2534–2557. [Google Scholar] [CrossRef]
- Liang, G.; Mudawar, I. Review of pool boiling enhancement by surface modification. Int. J. Heat Mass Transf. 2019, 128, 892–933. [Google Scholar] [CrossRef]
- Sun, Y.; Shuai, M.; Zhang, S.; Tang, Y.; Chen, G.; Zhong, G. Hierarchically 3D-textured copper surfaces with enhanced wicking properties for high-power cooling. Appl. Therm. Eng. 2020, 178, 115650. [Google Scholar] [CrossRef]
- Jun, S.; Godinez, J.C.; You, S.M.; Kim, H.Y. Pool boiling heat transfer of a copper microporous coating in borated water. Nuclear Eng. Technol. 2020, 52, 1939–1944. [Google Scholar] [CrossRef]
- Pastuszko, R.; Wójcik, T.M. Experimental investigations and a simplified model for pool boiling on micro-fins with sintered perforated foil. Exp. Therm. Fluid Sci. 2015, 63, 34–44. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, G.; Zhang, S.; Tang, Y.; Zeng, J.; Yuan, W. Pool boiling performance and bubble dynamics on microgrooved surfaces with reentrant cavities. Appl. Therm. Eng. 2017, 125, 432–442. [Google Scholar] [CrossRef]
- Wen, R.; Ma, X.; Lee, Y.-C.; Yang, R. Liquid-Vapor Phase-Change Heat Transfer on Functionalized Nanowired Surfaces and Beyond. Joule 2018, 2, 2307–2347. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-Q.; Luo, J.-L.; Heng, Y.; Mo, D.-C.; Lyu, S.-S. Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure. Int. J. Heat Mass Transf. 2018, 119, 333–342. [Google Scholar] [CrossRef]
- Allred, T.P.; Weibel, J.A.; Garimella, S.V. Enabling Highly Effective Boiling from Superhydrophobic Surfaces. Phys. Rev. Lett. 2018, 120, 174501. [Google Scholar] [CrossRef] [Green Version]
- Shim, D.; Choi, G.; Lee, N.; Kim, T.; Kim, B.S.; Cho, H.H. Enhancement of Pool Boiling Heat Transfer Using Aligned Silicon Nanowire Arrays. ACS Appl. Mater. Interfaces 2017, 9, 17595–17602. [Google Scholar] [CrossRef]
- Wen, R.; Li, Q.; Wang, W.; Latour, B.; Li, C.; Li, C.; Lee, Y.-C.; Yang, R. Enhanced Bubble Nucleation and Liquid Rewetting for Highly Efficient Boiling Heat Transfer on Two-Level Hierarchical Surfaces with Patterned Copper Nanowire Arrays. Nano Energy 2017, 38, 59–65. [Google Scholar] [CrossRef]
- Lee, C.Y.; Bhuiya, M.M.H.; Kim, K.J. Pool boiling heat transfer with nano-porous surface. Int. J. Heat Mass Transf. 2010, 53, 4274–4279. [Google Scholar]
- Chen, G.; Fan, D.; Zhang, S.; Sun, Y.; Zhong, G.; Wang, Z.; Wan, Z.; Tang, Y. Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices. Renew. Energy 2021, 163, 921–929. [Google Scholar] [CrossRef]
- Pastuszko, R.; Kaniowski, R.; Wójcik, T.M. Comparison of pool boiling performance for plain micro-fins and micro-fins with a porous layer. Appl. Therm. Eng. 2020, 166, 114658. [Google Scholar] [CrossRef]
- Zhao, Y.; Tsuruta, T.; Ji, C. Experimental study of nucleate boiling heat transfer enhancement in a confined space. Exp. Therm. Fluid Sci. 2003, 28, 9–16. [Google Scholar] [CrossRef]
- Pastuszko, R. Pool boiling on micro-fin array with wire mesh structures. Int. J. Therm. Sci. 2010, 49, 2289–2298. [Google Scholar] [CrossRef]
- Deng, D.; Wan, W.; Feng, J.; Huang, Q.; Qin, Y.; Xie, Y. Comparative experimental study on pool boiling performance of porous coating and solid structures with reentrant channels. Appl. Therm. Eng. 2016, 107, 420–430. [Google Scholar] [CrossRef]
- Tang, Y.; Zeng, J.; Zhang, S.; Chen, C.; Chen, J. Effect of structural parameters on pool boiling heat transfer for porous interconnected microchannel nets. Int. J. Heat Mass Transf. 2016, 93, 906–917. [Google Scholar] [CrossRef]
- Chen, G.; Jia, M.; Zhang, S.; Tang, Y.; Wan, Z. Pool boiling enhancement of novel interconnected microchannels with reentrant cavities for high-power electronics cooling. Int. J. Heat Mass Transf. 2020, 156, 119836. [Google Scholar] [CrossRef]
- Li, C.H.; Rioux, R.P. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer. Sci. Rep. 2016, 6, 37044. [Google Scholar] [CrossRef] [Green Version]
- Rishi, A.M.; Kandlikar, S.G.; Gupta, A. Salt templated and graphene nanoplatelets draped copper (GNP-draped-Cu) composites for dramatic improvements in pool boiling heat transfer. Sci. Rep. 2020, 10, 11941. [Google Scholar] [CrossRef]
- Li, J.; Kang, D.; Rabbi, K.F.; Fu, W.; Yan, X.; Fang, X.; Fan, L.; Miljkovic, N. Liquid film–induced critical heat flux enhancement on structured surfaces. Sci. Adv. 2021, 7, eabg4537. [Google Scholar] [CrossRef]
Sample | Outline Dimensions (Length × Width) (mm × mm) | Layer Number of Micromesh | Thickness of Micromesh Layers (mm) |
---|---|---|---|
CP | 10 × 10 | 0 | 0 |
MCM-1 | 10 × 10 | 1 | 0.06 |
MCM-3 | 10 × 10 | 3 | 0.16 |
MCM-5 | 10 × 10 | 5 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.; Bai, J.; Chen, S.; Zhang, S.; Li, J.; Sun, Y.; Chen, G. Pool Boiling Performance of Multilayer Micromeshes for Commercial High-Power Cooling. Micromachines 2021, 12, 980. https://doi.org/10.3390/mi12080980
Tang K, Bai J, Chen S, Zhang S, Li J, Sun Y, Chen G. Pool Boiling Performance of Multilayer Micromeshes for Commercial High-Power Cooling. Micromachines. 2021; 12(8):980. https://doi.org/10.3390/mi12080980
Chicago/Turabian StyleTang, Kairui, Jingjing Bai, Siyu Chen, Shiwei Zhang, Jie Li, Yalong Sun, and Gong Chen. 2021. "Pool Boiling Performance of Multilayer Micromeshes for Commercial High-Power Cooling" Micromachines 12, no. 8: 980. https://doi.org/10.3390/mi12080980
APA StyleTang, K., Bai, J., Chen, S., Zhang, S., Li, J., Sun, Y., & Chen, G. (2021). Pool Boiling Performance of Multilayer Micromeshes for Commercial High-Power Cooling. Micromachines, 12(8), 980. https://doi.org/10.3390/mi12080980