A Microfabricated Bandpass Filter with Coarse-Tuning and Fine-Tuning Ability Based on IPD Process and PCB Artwork
Abstract
:1. Introduction
2. Design and Analysis
2.1. BPF Design and Processing
2.2. Tuning, Modeling, and Simulation
2.3. BPF Equivalent Circuit
3. Results and Discussion
3.1. Measurement Preparation and Setup
3.2. PCB Design, Simulation, and Measurement
3.3. Measurement Preparation and Setup
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsai, H.; Chen, N.; Jeng, S. Center frequency and bandwidth controllable microstrip bandpass filter design using loop-shaped dual-mode resonator. IEEE Trans. Microw. Theory Tech. 2013, 61, 3590–3660. [Google Scholar] [CrossRef]
- Aliqab, K.; Hong, J.S. UWB balanced BPF using a low-cost LCP bonded multilayer PCB technology. IEEE Trans. Microw. Theory Tech. 2019, 67, 1023–1029. [Google Scholar] [CrossRef]
- Lu, D.; Tang, X.H.; Barker, N.S.; Li, M.; Yan, T.F. Synthesis-applied highly selective tunable dual-mode BPF with element-variable coupling matrix. IEEE Trans. Microw. Theory Tech. 2018, 66, 1804–1816. [Google Scholar] [CrossRef]
- Zheng, X.; Pan, Y.; Jiang, T. UWB bandpass filter with dual notched bands using T-shaped resonator and L-shaped defected microstrip structure. Micromachines 2018, 9, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Kang, W.; Wu, W. Miniaturized dual-band SIW filters using E-shaped slot lines with controllable center frequencies. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 311–313. [Google Scholar] [CrossRef]
- Jia, T.; Ye, J.; Liu, Z. A RF-MEMS based dual-band tunable filter with independently controllable passbands. In Proceedings of the 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology ICSICT, Guilin, China, 28–31 October 2014; pp. 1–3. [Google Scholar]
- Gao, L.; Zhang, X.Y.; Zhao, X.; Zhang, Y.; Xu, J. Novel compact quad-band bandpass filter with controllable frequencies and bandwidths. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 395–397. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y. Tunable bandpass filter using a switched tunable diplexer technique. IEEE Trans. Ind. Electron. 2017, 64, 3118–3126. [Google Scholar] [CrossRef]
- Cheng, T.; Tam, K. A wideband bandpass flter with reconfigurable bandwidth based on cross-shaped resonator. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 909–911. [Google Scholar] [CrossRef]
- Pal, B.; Mandal, M.K.; Dwari, S. Varactor tuned dual-band bandpass filter with independently tunable band positions. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 255–257. [Google Scholar] [CrossRef]
- Zhu, H.; Abbosh, A.M. Tunable balanced bandpass filter with wide tuning range of center frequency and bandwidth using compact coupled-line resonator. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 7–9. [Google Scholar] [CrossRef]
- Zheng, Y.; Sazegar, M.; Maune, H.; Zhou, X.; Binder, J.R.; Jakoby, R. Compact substrate integrated waveguide tunable filter based on ferroelectric ceramics. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 477–479. [Google Scholar] [CrossRef]
- Han, Y.K.; Deng, H.W.; Zhu, J.M.; Xing, S.B.; Han, W. Compact dual-band dual-mode SIW balanced BPF with intrinsic common-mode suppression. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 101–104. [Google Scholar] [CrossRef]
- Psychogiou, D.; Sadasivan, K. Tunable coaxial cavity resonator-based filters using actuated liquid metal posts. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 763–766. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, H.; Chen, J. Novel microfluidically tunable differential dual-mode patch filter. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 461–463. [Google Scholar] [CrossRef]
- Wu, Y.; Qiang, T.; Wang, C.; Adhikari, K.K.; Lv, X.; Wu, Y. GaAs-based IPD-fabricated center-frequency-controllable bandpass filter with asymmetrical differential inductor and air-bridge enhanced capacitor. IEEE Access 2019, 7, 137784–137793. [Google Scholar] [CrossRef]
- Wang, Z.; Kim, E.; Liang, J.; Kim, N. QFN-packaged bandpass filter with intertwined circular spiral inductor and integrated center-located capacitors using integrated passive device technology. IEEE Access 2019, 7, 13597–13607. [Google Scholar] [CrossRef]
- Zhou, H.; Götzinger, M.; Peukert, W. The influence of particle charge and roughness on particle–substrate adhesion. Powder Technol. 2003, 135, 82–91. [Google Scholar] [CrossRef]
- Nilsson, J.; Borg, J.; Johansson, J. Maximal Q factor for an on-chip, fuse-based trimmable capacitor. Electronics 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Bahl, I.J. Lumped Elements for RF and Microwave Circuits, 1st ed.; Artech: Norwood, MA, USA; London, UK, 2003; p. 175. [Google Scholar]
- Qiang, T.; Wang, C.; Kim, N. A compact high-reliability high-performance 900-MHz WPD using GaAs-IPD technology. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 498–500. [Google Scholar] [CrossRef]
- Mohan, S.S.; Hershenson, M.D.; Boyd, M.S.P.; Lee, T.H. Simple accurate expressions for planar spiral inductances. IEEE J. Solid St. Circ. 1999, 34, 1419–1424. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.H.; Jin, Z.J.; Kim, M.G.; Sun, H.; Yun, T.Y. Equivalent-circuit model based on mathematical analysis for multilayer chip inductors. IET Microw. Antenna P 2008, 2, 378–382. [Google Scholar] [CrossRef]
- Haobijam, G.; Palathinkal, R.P. Design and Analysis of Spiral Inductors, 1st ed.; Springer: Manhattan, NY, USA, 2013; pp. 21–51. [Google Scholar]
- Chen, J. On-Chip Spiral Inductor Transformer Design and Modeling for RF Applications. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2006. [Google Scholar]
- Yue, C.P.; Wong, S.S. Physical modeling of spiral inductors on silicon. IEEE Trans. Electron. Devices 2000, 47, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.J.; Kim, E.S.; Liang, J.G.; Qiang, T.; Kim, N.Y. A high-frequency-compatible miniaturized bandpass filter with air-bridge structures using GaAs-based integrated passive device technology. Micromachines 2018, 9, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ref. | Substrate, Process | IL (dB) | RL (dB) | Chip Area | FBW (%) | CFC/TZC | TAR (%) | MTV (MHz) | ATV (MHz) |
---|---|---|---|---|---|---|---|---|---|
[7] | Not Given microstrip | 2.5–7.72 | >15 | Not Given (0.095 λ0 × 0.058 λ0) | 10.2–24.3 | Yes/No | 11/ N.A. | 90/ N.A. | 125/ N.A. |
[8] | RO4003, microstrip | 1.4 | 10 | 29.4 mm × 29.4 mm Not Given | 34.8–56.5 | Yes/No | 3.6/ N.A. | >30/ N.A. | >142/ N.A. |
[9] | RO4003C, microstrip | 0.78–2.02 | <50 | 18.73 mm × 11.68 mm Not Given | 14.0–40.3 | Yes/No | 8.3/ N.A. | >5/ N.A. | >100/ N.A. |
[10] | RT/Durid6010, Not Given | 1.8–4.6 | <40 | Not Given (0.12 λ0 × 0.08 λ0) | N.G. | Yes/No | 25/ N.A. | >70/ N.A. | >150/ N.A. |
[11] | Al2O3, SIW | 2.6–3.3 | 15–18 | 12.5 mm × 9.5 mm (0.10 λ0 × 0.34 λ0) | 5.0–9.0 | Yes/Yes | 33/ 33 | >150/ >250 | >200/ >300 |
[12] | Rogers RT 4003, SIW | >2.25 | >50 | 13.0 mm × 13.0 mm Not Given | 3.5/6.0 | Yes/No | >5/ N.A. | >10/ N.A. | >50/ N.A. |
[13] | Rogers 4350, microstrip | <1 | >10 | 18 mm × 18 mm Not Given | 8.0 | Yes/No | 12.5/ N.A. | >400/ N.A. | 513/ N.A. |
[14] | Rogers 5880, microstrip | 0.78–1.18 | N.G. | 45.0 mm × 45.0 mm Not Given | 15.2–16.4 | Yes/No | 25/ N.A. | 54/ N.A. | 60/ N.A. |
[15] | GaAs, IPD | 0.38 | 17.4 | 0.800 mm × 0.988 mm (0.015 λ0 × 0.018 λ0) | 51.3 | Yes/Yes | 20/ 20 | 103/ 117 | 128/ 290 |
[16] | GaAs, IPD | 0.62 | 28.8 | 1.19 mm ×1.01 mm Not Given | 72.7 | Yes/Yes | >25/ >25 | >100/ >300 | >125/ >375 |
This work | GaAs, IPD | 0.38 | 21.5 | 0.800 mm × 0.988 mm (0.015 λ0 × 0.018 λ0) | 74.7 | Yes/Yes | 2.5/ 2.5 | 1.0/ 1.0 | 4.7/ 12.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Qiang, T.; Gao, M.; Ma, Y.; Liang, J.; Jiang, Y. A Microfabricated Bandpass Filter with Coarse-Tuning and Fine-Tuning Ability Based on IPD Process and PCB Artwork. Micromachines 2022, 13, 123. https://doi.org/10.3390/mi13010123
Shen J, Qiang T, Gao M, Ma Y, Liang J, Jiang Y. A Microfabricated Bandpass Filter with Coarse-Tuning and Fine-Tuning Ability Based on IPD Process and PCB Artwork. Micromachines. 2022; 13(1):123. https://doi.org/10.3390/mi13010123
Chicago/Turabian StyleShen, Junzhe, Tian Qiang, Minjia Gao, Yangchuan Ma, Junge Liang, and Yanfeng Jiang. 2022. "A Microfabricated Bandpass Filter with Coarse-Tuning and Fine-Tuning Ability Based on IPD Process and PCB Artwork" Micromachines 13, no. 1: 123. https://doi.org/10.3390/mi13010123
APA StyleShen, J., Qiang, T., Gao, M., Ma, Y., Liang, J., & Jiang, Y. (2022). A Microfabricated Bandpass Filter with Coarse-Tuning and Fine-Tuning Ability Based on IPD Process and PCB Artwork. Micromachines, 13(1), 123. https://doi.org/10.3390/mi13010123