A Review on Additive Manufacturing of Micromixing Devices
Abstract
:1. Introduction
2. Printing Technologies in AM
- The generation of a master.
- The use of the master to manufacture replicas.
- Many manual steps are needed to obtain the PDMS mould, making it difficult to fully automate the whole process.
- Control systems involve engineering skills and equipment that are not present in all laboratories.
2.1. Relevant Characteristics of Each Category
2.1.1. Material Extrusion
- +
- FDM technology is the most cost-effective method when it comes to manufacturing customised thermoplastic parts and prototypes.
- +
- Manufacturing times are usually short.
- +
- There is a wide range of materials available, which are suitable for both industrial prototypes and some non-commercial functional applications.
- −
- It has the lowest dimensional accuracy and resolution compared to other 3D printing technologies, so it is not suitable for parts with complex details. However, its cost is lower in comparison to other available technologies. It is used for products where details are not so important.
- −
- Printed parts will have layer lines that will be visible, hence, if a smooth finish is desired, the piece will require a post-processing [92]. In addition, the bonding mechanism of the layers will make the parts inherently anisotropic. Therefore, this technology is not recommended for manufacturing parts that will be used as mechanically critical components.
2.1.2. Vat Photopolymerization
- Vector/spot scanning: typical of SLA printers.
- Layer projection: irradiate entire layers.
- Two-photon approaches: high-resolution point-by-point approaches.
- SLA works with the light source of a laser beam. It is the most commonly used among the vat photopolmerization technologies. The laser can be located under or above the resin tank, and if the laser is located under the tank, this technology provides better results for small build volumes [101].
- DLP works with the light source of a digital light projector. DLP is similar to SLA, but the printing speed is faster due to the use of the projector, which cures each layer sequentially. This technology can make use of a Digital Micromirror Device (DMD) for the illumination [100], making it possible to rotate in a rapid way and reflect light.
- LCD works with Light-Emitting Diodes (LED). This technique is also called Daylight Polymer Printing (DPP), since it uses unmodified LCD screens and a daylight polymer. The main difference with DLP lies in the imaging system, because of the fact that this technology uses a liquid crystal display, which prevents light from passing through. Thus, the resolution of the liquid crystal display is very high; however, the accuracy of LCD is lower than that of DLP [102]. It is also faster than SLA technology.
- CLIP works with LEDs and oxygen. Thanks to the continuous liquid interface production method, this technology increases the printing speed and the resolution [103]. It works similarly to DLP. It has a “dead zone” to prevent the adhesion of the piece to the window, and this region is located between an oxygen permeable window and the curing part surface, which targets the inhibition of free radical photopolymerization [104,105].
- 2PP works with the light source of a titanium sapphire femtosecond laser. This method aims to achieve a resolution below the diffraction limit [106]. The fabrication process is defined by an objective lens focusing the laser onto the photosensitive resin [107], and inside the resin, the polymerization process takes place [108]. It is widely used in systems where there is a need to use nano and micro elements [109], because it has a subdiffraction-limit resolution down to 100 nm [110].
- SLA:
- +
- It is able to print large models with a high accuracy and surface finish.
- +
- The printing size is not limited.
- −
- High elapsed times.
- DLP:
- +
- Higher print speed in comparison to SLA.
- +
- Lower cost (low price) of printers.
- +
- Very good precision.
- −
- High cost of materials.
- −
- The projection size is limited.
- LCD:
- +
- Lower cost (low price) of printers.
- +
- Good resolution.
- −
- Short lifespan.
- −
- The intensity of the light is weak.
- −
- The liquid tank must be cleaned regularly (requires continuous maintenance).
- CLIP:
- +
- Higher print speed in comparison to DLP.
- −
- To achieve rapid printing, a low viscosity resin and a hollow model are necessary.
- −
- Efficiency is not high.
- −
- The use of the permeable oxygen membrane is expensive.
- 2PP:
- +
- It provides a high spatial resolution.
- +
- The laser is able to penetrate deeply into the material.
- −
- Expensive (price) printers.
- −
- Limited building area.
- −
- Errors in voxels affect the accuracy.
- −
- Low building speed.
2.1.3. Material Jetting
- Jetting parameters: frequency, magnitude, and width of the signal.
- Ink properties: surface tension and viscosity.
- Environment: pressure, humidity, and temperature.
- +
- Capability of printing multi-material in different colours and gradient structures.
- +
- Printers are able to build large structures with complex shapes and smooth finishes.
- +
- It provides high resolution: it is an attractive technology for microfluidic applications.
- +
- Polyjet printers are user-friendly.
- −
- Printed devices need some post-processing.
- −
- Ink deposition time is short, so several requirements in relation to viscosity and surface tension must be taken into account.
- −
- Printers are expensive and proprietary.
2.1.4. Powder Bed Fusion
- +
- Solvent-free process: the unsintered powder acts as support.
- +
- SLS can produce 3D parts with high controlled porosity and high pore connectivity [166].
- +
- The unsintered powder material can be recycled and reused.
- +
- EBM provides better microstructural control.
- +
- They can be used to manufacture complex parts with little effort.
- −
- A large quantity of powder is required to complete the printing process.
- −
- A post-processing process may be required.
- −
- The quality of metal parts printed with SLS is lower than that of parts printed with EBM.
- −
- EBM technology is expensive because it requires vacuum operation.
- −
- High power usage is required.
2.1.5. Binder Jetting
- How the powders interact with the binder, taking into account wettability and penetration.
- The amount of binder residue in the cleaning process.
- +
- The process has a very high speed compared to others.
- +
- It is able to process different kinds of materials.
- +
- 3D objects can be made in different colours.
- +
- With the two-material method, the printing can obtain different binder-powder combinations, as well as several mechanical properties.
- −
- It is high in cost.
- −
- It is not suitable for any structural parts because of the use of binder material.
- −
- The post-processing could considerably increase the time of the whole process.
3. Important Features during the AM Process
3.1. Resolution and Precision
- High resolution values are quite good when the visual quality and the details are important. If the model has a complex geometry or is too small in material extrusion is necessary to use low layer heights to achieve more accuracy [200].
- Low resolution values are valid for rapid prototyping, in which the quality of the part is not the main factor. In some designs, there is no difference between 20 μm or 30 μm of layer thickness but there are in time and cost.
- If the model is going to be polished or sanded, or even painted (post-processing) after the printing, the resolution may be less relevant due to the fact that the layers will disappear.
3.2. Material
- Material extrusion provides two options to remove supports:
- Vat photopolymerization uses less support material than the others. Support material can be easily removed with water jets [120].
- Material jetting has different possibilities depending on the selected printer [195]:
- −
- Polyjet: use of a water jet to remove the support material.
- −
- Multijet: used to melt away support material at approximately 60 °C.
- Powder bed fusion uses support structures that, ideally, should be weak enough to be removed easily with minimal effort for cutting, breaking, or machining [206] but still provide stability to the part during printing.
- Binder jetting does not need support structures, since the remaining loose powder in the bed acts as support structure for the overhanging structures [207].
3.3. Properties
3.4. Capacity and Leakage
3.5. Cost
3.6. Assessment of Specifications
3.7. Slicers
4. Future Prospects in AM of Micromixers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
AM | Additive Manufacturing |
CAD | Computer-Aided Design |
RP | Rapid Prototyping |
ASTM | American Society for Testing and Materials |
PDMS | Polydimethylsiloxane |
ABS | Acrylonitrile Butadiene Styrene |
PA | Polyamide |
PC | Polycarbonate |
PEKK | Polyetherketoneketone |
PLA | Polylactic Acid |
PPSF | Polyphenylsulfone |
TPU | Thermoplastic Polyurethane |
SLA/SL | Stereolithography |
UV | Ultraviolet |
DLP | Digital Light Processing |
LCD | Liquid Crystal Display |
CLIP | Continuous Light Interface Production |
2PP | Two-Photon Polymerization |
PE | Polyethylene |
PP | Polypropylene |
EPU | Elastomeric Polyurethane |
MJ | Material Jetting |
DOD | Drop On Demand |
CIJ | Continuous Ink Jet |
NPJ | NanoParticle Jetting |
CAM | Computer Aided Manufacturing |
STL | Standard Tessellation Language |
CCD | Charge-Coupled Device |
PEI | Polyetherimide |
LOC | Lab-On-a-Chip |
VIV | Vortex Induced Vibration |
PET-G | Polyethylene Terephthalate with Glycol |
PP | Polypropylene |
ASA | Acrylonitrile Styrene Acrylate |
CFD | Computational Fluid Dynamics |
PBF | Powder Bed Fusion |
SLS | Selective Laser Sintering |
SLM | Selective Laser Melting |
DMLS | Direct Metal Laser Sintering |
SHS | Selective Heat Sintering |
EBM | Electron Beam Melting |
BJ | Binder Jetting |
3DP | Three Dimension Printing |
References
- ISO/ASTM 52900:2015(en). Additive Manufacturing—General Principles—Terminology. Available online: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en (accessed on 22 December 2021).
- Pietropaoli, M.; Montomoli, F.; Gaymann, A. Three-dimensional fluid topology optimization for heat transfer. Struct. Multidiscip. Optim. 2019, 59, 801–812. [Google Scholar] [CrossRef] [Green Version]
- Cicconi, P.; Mandolini, M.; Favi, C.; Campi, F.; Germani, M. Metal Additive Manufacturing for the Rapid Prototyping of Shaped Parts: A Case Study. Comput. Des. Appl. 2021, 18, 1061–1079. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2021; Volume 17. [Google Scholar]
- Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Kruth, J.P.; Leu, M.C.; Nakagawa, T. Progress in additive manufacturing and rapid prototyping. Cirp Ann. 1998, 47, 525–540. [Google Scholar] [CrossRef]
- Pham, D.T.; Gault, R.S. A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 1998, 38, 1257–1287. [Google Scholar] [CrossRef]
- Ventola, C.L. Medical applications for 3D printing: Current and projected uses. Pharm. Ther. 2014, 39, 704. [Google Scholar]
- Klein, G.T.; Lu, Y.; Wang, M.Y. 3D printing and neurosurgery–ready for prime time? World Neurosurg. 2013, 80, 233–235. [Google Scholar] [CrossRef]
- van der Linden, P.J.; Popov, A.M.; Pontoni, D. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer. Lab Chip 2020, 20, 4128–4140. [Google Scholar] [CrossRef]
- Mitsouras, D.; Liacouras, P.; Imanzadeh, A.; Giannopoulos, A.A.; Cai, T.; Kumamaru, K.K.; George, E.; Wake, N.; Caterson, E.J.; Pomahac, B.; et al. Medical 3D printing for the radiologist. Radiographics 2015, 35, 1965–1988. [Google Scholar] [CrossRef]
- Moon, S.K.; Tan, Y.E.; Hwang, J.; Yoon, Y.J. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 223–228. [Google Scholar] [CrossRef]
- Erkal, J.L.; Selimovic, A.; Gross, B.C.; Lockwood, S.Y.; Walton, E.L.; McNamara, S.; Martin, R.S.; Spence, D.M. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 2014, 14, 2023–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.B.; Lockwood, S.Y.; Martin, R.S.; Spence, D.M. A 3D printed fluidic device that enables integrated features. Anal. Chem. 2013, 85, 5622–5626. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Lockwood, S.Y.; Spence, D.M. 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst 2014, 139, 3219–3226. [Google Scholar] [CrossRef]
- Wang, L.; Pumera, M. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. TrAC Trends Anal. Chem. 2021, 135, 116151. [Google Scholar] [CrossRef]
- International Organization for Standardization. Additive Manufacturing—General Principles—Terminology; ISO/ASTM 52900:2015; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Calignano, F.; Manfredi, D.; Ambrosio, E.P.; Biamino, S.; Lombardi, M.; Atzeni, E.; Salmi, A.; Minetola, P.; Iuliano, L.; Fino, P. Overview on additive manufacturing technologies. Proc. IEEE 2017, 105, 593–612. [Google Scholar] [CrossRef]
- Petrovic, V.; Vicente Haro Gonzalez, J.; Jordá Ferrando, O.; Delgado Gordillo, J.; Ramón Blasco Puchades, J.; Portolés Griñan, L. Additive layered manufacturing: Sectors of industrial application shown through case studies. Int. J. Prod. Res. 2011, 49, 1061–1079. [Google Scholar] [CrossRef]
- Kim, P.; Kwon, K.W.; Park, M.C.; Lee, S.H.; Kim, S.M.; Suh, K.Y. Soft lithography for microfluidics: A review. Biochip J. 2008, 2, 1–11. [Google Scholar]
- McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.; Schueller, O.J.; Whitesides, G.M. Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophor. Int. J. 2000, 21, 27–40. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Quake, S.R.; Scherer, A. From micro-to nanofabrication with soft materials. Science 2000, 290, 1536–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, H.; Locascio, L.E. Polymer microfluidic devices. Talanta 2002, 56, 267–287. [Google Scholar] [CrossRef]
- Attia, U.M.; Marson, S.; Alcock, J.R. Micro-injection moulding of polymer microfluidic devices. Microfluid. Nanofluid. 2009, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Abgrall, P.; Gue, A. Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem—A review. J. Micromech. Microeng. 2007, 17, R15. [Google Scholar] [CrossRef]
- He, Y.; Wu, Y.; Fu, J.Z.; Gao, Q.; Qiu, J.J. Developments of 3D printing microfluidics and applications in chemistry and biology: A review. Electroanalysis 2016, 28, 1658–1678. [Google Scholar] [CrossRef]
- Balakrishnan, H.K.; Badar, F.; Doeven, E.H.; Novak, J.I.; Merenda, A.; Dumee, L.F.; Loy, J.; Guijt, R.M. 3D printing: An alternative microfabrication approach with unprecedented opportunities in design. Anal. Chem. 2020, 93, 350–366. [Google Scholar] [CrossRef]
- Gross, B.; Lockwood, S.Y.; Spence, D.M. Recent advances in analytical chemistry by 3D printing. Anal. Chem. 2017, 89, 57–70. [Google Scholar] [CrossRef]
- Barry, R.; Ivanov, D. Microfluidics in biotechnology. J. Nanobiotechnol. 2004, 2, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef]
- Guo, L.; Feng, J.; Fang, Z.; Xu, J.; Lu, X. Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci. Technol. 2015, 46, 252–263. [Google Scholar] [CrossRef]
- Thorsen, T.; Maerkl, S.J.; Quake, S.R. Microfluidic large-scale integration. Science 2002, 298, 580–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schertzer, M.J.; Mrad, R.B.; Sullivan, P.E. Automated detection of particle concentration and chemical reactions in EWOD devices. Sens. Actuators B Chem. 2012, 164, 1–6. [Google Scholar] [CrossRef]
- Hou, H.H.; Wang, Y.N.; Chang, C.L.; Yang, R.J.; Fu, L.M. Rapid glucose concentration detection utilizing disposable integrated microfluidic chip. Microfluid. Nanofluid. 2011, 11, 479–487. [Google Scholar] [CrossRef]
- Ibarlucea, B.; Munoz-Berbel, X.; Ortiz, P.; Büttgenbach, S.; Fernández-Sánchez, C.; Llobera, A. Self-validating lab-on-a-chip for monitoring enzyme-catalyzed biological reactions. Sens. Actuators B Chem. 2016, 237, 16–23. [Google Scholar] [CrossRef]
- Granados-Ortiz, F.J.; Ortega-Casanova, J. Mechanical Characterisation and Analysis of a Passive Micro Heat Exchanger. Micromachines 2020, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Abed, W.M.; Whalley, R.D.; Dennis, D.J.; Poole, R.J. Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel. J. Non–Newton. Fluid Mech. 2016, 231, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, X. An improved design for passive micromixer based on topology optimization method. Chem. Phys. Lett. 2019, 734, 136706. [Google Scholar] [CrossRef]
- Kuo, J.N.; Li, Y.S. Centrifuge-based micromixer with three-dimensional square-wave microchannel for blood plasma mixing. Microsyst. Technol. 2017, 23, 2343–2354. [Google Scholar] [CrossRef]
- Cai, G.; Xue, L.; Zhang, H.; Lin, J. A review on micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef]
- Amin, R.; Knowlton, S.; Hart, A.; Yenilmez, B.; Ghaderinezhad, F.; Katebifar, S.; Messina, M.; Khademhosseini, A.; Tasoglu, S. 3D-printed microfluidic devices. Biofabrication 2016, 8, 022001. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.M.; Xia, Y.; Whitesides, G.M. Soft lithographic methods for nano-fabrication. J. Mater. Chem. 1997, 7, 1069–1074. [Google Scholar] [CrossRef]
- Love, J.C.; Anderson, J.R.; Whitesides, G.M. Fabrication of three-dimensional microfluidic systems by soft lithography. MRS Bull. 2001, 26, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Jo, B.H.; Van Lerberghe, L.M.; Motsegood, K.M.; Beebe, D.J. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 2000, 9, 76–81. [Google Scholar] [CrossRef]
- Mark, J.E. Chapter 1: Overview of siloxane polymers. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2000; pp. 1–10. [Google Scholar]
- Armani, D.; Liu, C.; Aluru, N. Re-configurable fluid circuits by PDMS elastomer micromachining. In Technical Digest, Proceedings of the IEEE International MEMS 99 Conference, Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291), Orlando, FL, USA, 17–21 January 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 222–227. [Google Scholar]
- Gates, B.D.; Whitesides, G.M. Replication of vertical features smaller than 2 nm by soft lithography. J. Am. Chem. Soc. 2003, 125, 14986–14987. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, H.N.; Chen, Y.; Shu, Y.; Chen, Y.; Tian, Q.; Wu, H. Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid. Nanofluid. 2015, 19, 9–18. [Google Scholar] [CrossRef]
- Rafiee, M.; Farahani, R.D.; Therriault, D. Multi-Material 3D and 4D Printing: A Survey. Adv. Sci. 2020, 7, 1902307. [Google Scholar] [CrossRef]
- Lee, M.P.; Cooper, G.J.; Hinkley, T.; Gibson, G.M.; Padgett, M.J.; Cronin, L. Development of a 3D printer using scanning projection stereolithography. Sci. Rep. 2015, 5, 9875. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Ding, H.; Gao, B.; He, Z.; Gu, Z. Advances of Microfluidics in Biomedical Engineering. Adv. Mater. Technol. 2019, 4, 1800663. [Google Scholar] [CrossRef]
- O’Neill, P.F.; Ben Azouz, A.; Vazquez, M.; Liu, J.; Marczak, S.; Slouka, Z.; Chang, H.C.; Diamond, D.; Brabazon, D. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics 2014, 8, 052112. [Google Scholar] [CrossRef] [Green Version]
- Savini, A.; Savini, G. A short history of 3D printing, a technological revolution just started. In Proceedings of the 2015 ICOHTEC/IEEE International History of High-Technologies and Their Socio-Cultural Contexts Conference (HISTELCON), Tel-Aviv, Israel, 16–21 August 2015; pp. 1–8. [Google Scholar]
- Crump, S.S. Fused deposition modeling (FDM): Putting rapid back into prototyping. In Proceedings of the 2nd International Conference on Rapid Prototyping, Dayton, OH, USA, 23–26 June 1991; pp. 354–357. [Google Scholar]
- Balletti, C.; Ballarin, M.; Guerra, F. 3D printing: State of the art and future perspectives. J. Cult. Herit. 2017, 26, 172–182. [Google Scholar] [CrossRef]
- Pranzo, D.; Larizza, P.; Filippini, D.; Percoco, G. Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: A topical review. Micromachines 2018, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Canessa, E.; Fonda, C.; Zennaro, M.; Deadline, N. Low-Cost 3D Printing for Science, Education & Sustainable Development; ICTP—The Abdus Salam International Centre for Theoretical Physics: Trieste, Italy, 2013; Volume 11. [Google Scholar]
- Shah, J.; Snider, B.; Clarke, T.; Kozutsky, S.; Lacki, M.; Hosseini, A. Large-scale 3D printers for additive manufacturing: Design considerations and challenges. Int. J. Adv. Manuf. Technol. 2019, 104, 3679–3693. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukindar, N.A.; Ariffin, M.; Baharudin, B.H.T.; Jaafar, C.N.A.; Ismail, M.I.S. Analyzing the effect of nozzle diameter in fused deposition modeling for extruding polylactic acid using open source 3D printing. J. Teknol. 2016, 78, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Aliheidari, N.; Tripuraneni, R.; Hohimer, C.; Christ, J.; Ameli, A.; Nadimpalli, S. The impact of nozzle and bed temperatures on the fracture resistance of FDM printed materials. In Proceedings of the Behavior and Mechanics of Multifunctional Materials and Composites, Portland, OR, USA, 11 April 2017; Volume 10165, p. 1016512. [Google Scholar]
- Ćwikła, G.; Grabowik, C.; Kalinowski, K.; Paprocka, I.; Ociepka, P. The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 227, p. 012033. [Google Scholar]
- Find Materials and Filaments for 3D Printing | Stratasys. Available online: https://www.stratasys.com/materials/search?technologies=ff37d7b8297c4e43977c155d765f3305&sortIndex=0 (accessed on 7 May 2021).
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Hwang, S.; Reyes, E.I.; Moon, K.s.; Rumpf, R.C.; Kim, N.S. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 2015, 44, 771–777. [Google Scholar] [CrossRef]
- Spoerk, M.; Gonzalez-Gutierrez, J.; Sapkota, J.; Schuschnigg, S.; Holzer, C. Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast. Rubber Compos. 2018, 47, 17–24. [Google Scholar] [CrossRef]
- Valerga, A.P.; Batista, M.; Salguero, J.; Girot, F. Influence of PLA filament conditions on characteristics of FDM parts. Materials 2018, 11, 1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, V.; Vilikkathala Sudhakaran, S.; Rath, S.N. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. ACS Biomater. Sci. Eng. 2021, 7, 3947–3963. [Google Scholar] [CrossRef] [PubMed]
- Veselỳ, P. Nozzle Temperature Effect on 3D Printed Structure Properties, 2019. Available online: https://www.researchgate.net/profile/Petr-Vesely-9/publication/333396106_Nozzle_Temperature_Effect_on_3D_Printed_Structure_Properties/links/5d70df99299bf1cb80886140/Nozzle-Temperature-Effect-on-3D-Printed-Structure-Properties.pdf (accessed on 7 December 2021).
- Aumnate, C.; Limpanart, S.; Soatthiyanon, N.; Khunton, S. PP/organoclay nanocomposites for fused filament fabrication (FFF) 3D printing. Express Polym. Lett. 2019, 13, 898–909. [Google Scholar] [CrossRef]
- Bakar, N.S.A.; Alkahari, M.R.; Boejang, H. Analysis on fused deposition modelling performance. J. Zhejiang Univ. Sci. A 2010, 11, 972–977. [Google Scholar] [CrossRef]
- Perez, C.L. Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes. Int. J. Prod. Res. 2002, 40, 2865–2881. [Google Scholar] [CrossRef]
- Thrimurthulu, K.; Pandey, P.M.; Reddy, N.V. Optimum part deposition orientation in fused deposition modeling. Int. J. Mach. Tools Manuf. 2004, 44, 585–594. [Google Scholar] [CrossRef]
- Singh, R. Process capability analysis of fused deposition modelling for plastic components. Rapid Prototyp. J. 2014, 20, 69–76. [Google Scholar] [CrossRef]
- Elkaseer, A.; Schneider, S.; Scholz, S.G. Experiment-based process modeling and optimization for high-quality and resource-efficient FFF 3D printing. Appl. Sci. 2020, 10, 2899. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.M.; Reddy, N.V.; Dhande, S.G. Real time adaptive slicing for fused deposition modelling. Int. J. Mach. Tools Manuf. 2003, 43, 61–71. [Google Scholar] [CrossRef]
- Espalin, D.; Ramirez, J.A.; Medina, F.; Wicker, R. Multi-material, multi-technology FDM: Exploring build process variations. Rapid Prototyp. J. 2014, 20, 236–244. [Google Scholar] [CrossRef]
- Tamburrino, F.; Graziosi, S.; Bordegoni, M. The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: An exploratory study. Virtual Phys. Prototyp. 2019, 14, 316–332. [Google Scholar] [CrossRef]
- Minetola, P.; Iuliano, L.; Bassoli, E.; Gatto, A. Impact of additive manufacturing on engineering education–evidence from Italy. Rapid Prototyp. J. 2015, 21, 535–555. [Google Scholar] [CrossRef]
- Turner, B.N.; Gold, S.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 2015, 21, 250–261. [Google Scholar] [CrossRef]
- Anitha, R.; Arunachalam, S.; Radhakrishnan, P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 2001, 118, 385–388. [Google Scholar] [CrossRef]
- Stratasys F170 Review—Industrial—Grade 3D Printer for Professionals. Available online: https://www.aniwaa.com/product/3d-printers/stratasys-f170/ (accessed on 7 December 2021).
- Industrial 3D Printers—3D Printing. Available online: https://3dprinting.com/product-category/industrial-3d-printer/?min_price=157050&max_price=190000&filter_technology=fff-fdm (accessed on 7 May 2021).
- Gordeev, E.G.; Galushko, A.S.; Ananikov, V.P. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLoS ONE 2018, 13, e0198370. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M. 3D printing gets a boost and opportunities with polymer materials. ACS Macro Lett. 2014, 3, 382–386. [Google Scholar] [CrossRef]
- Ten Kate, J.; Smit, G.; Breedveld, P. 3D-printed upper limb prostheses: A review. Disabil. Rehabil. Assist. Technol. 2017, 12, 300–314. [Google Scholar] [CrossRef]
- Valerga, A.P.; Batista, M.; Fernandez-Vidal, S.R.; Gamez, A.J. Impact of chemical post-processing in fused deposition modelling (FDM) on polylactic acid (PLA) surface quality and structure. Polymers 2019, 11, 566. [Google Scholar] [CrossRef] [Green Version]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D printed microfluidic devices: Enablers and barriers. Lab Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I.; Rosen, D.; Stucker, B. Vat photopolymerization processes. In Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2015; pp. 63–106. [Google Scholar]
- Melchels, F.P. Celebrating three decades of stereolithography. Virtual Phys. Prototyp. 2012, 7, 173–175. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mulhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [Green Version]
- Vaezi, M.; Chianrabutra, S.; Mellor, B.; Yang, S. Multiple material additive manufacturing—Part 1: A review. Virtual Phys. Prototyp. 2013, 8, 19–50. [Google Scholar] [CrossRef]
- Medellin, A.; Du, W.; Miao, G.; Zou, J.; Pei, Z.; Ma, C. Vat photopolymerization 3D printing of nanocomposites: A literature review. J. Micro- Nano-Manuf. 2019, 7, 031006. [Google Scholar] [CrossRef]
- Xu, X.; Awad, A.; Martinez, P.R.; Gaisford, S.; Goyanes, A.; Basit, A.W. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J. Control. Release 2020, 329, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Au, A.K.; Huynh, W.; Horowitz, L.F.; Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 2016, 55, 3862–3881. [Google Scholar] [CrossRef] [PubMed]
- Martinez, P.R.; Basit, A.W.; Gaisford, S. The history, developments and opportunities of stereolithography. In 3D Printing of Pharmaceuticals; Springer: Berlin/Heidelberg, Germany, 2018; pp. 55–79. [Google Scholar]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef]
- Kuang, X.; Zhao, Z.; Chen, K.; Fang, D.; Kang, G.; Qi, H.J. High-speed 3D printing of high-performance thermosetting polymers via two-stage curing. Macromol. Rapid Commun. 2018, 39, 1700809. [Google Scholar] [CrossRef]
- Bagheri, A.; Jin, J. Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.R.; Caudill, C.L.; Tumbleston, J.R.; Bloomquist, C.J.; Moga, K.A.; Ermoshkin, A.; Shirvanyants, D.; Mecham, S.J.; Luft, J.C.; DeSimone, J.M. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS ONE 2016, 11, e0162518. [Google Scholar] [CrossRef]
- Zheng, L.; Kurselis, K.; El-Tamer, A.; Hinze, U.; Reinhardt, C.; Overmeyer, L.; Chichkov, B. Nanofabrication of high-resolution periodic structures with a gap size Below 100 nm by two-photon polymerization. Nanoscale Res. Lett. 2019, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.F.; Zheng, M.L.; Duan, X.M. Two-photon polymerization microfabrication of hydrogels: An advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 2015, 44, 5031–5039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz, V.F.; Emons, M.; Obata, K.; Ovsianikov, A.; Peterhänsel, S.; Frenner, K.; Reinhardt, C.; Chichkov, B.; Morgner, U.; Osten, W. Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J. Laser Appl. 2012, 24, 042004. [Google Scholar] [CrossRef] [Green Version]
- Rajkumari, K.; Chandra, P.; Balaji, P. Three-Dimensional Printing—A Revolutionary Technology. J. Clin. Diagn. Res. 2018, 12, 12–18. [Google Scholar]
- Zhou, X.; Hou, Y.; Lin, J. A review on the processing accuracy of two-photon polymerization. AIP Adv. 2015, 5, 030701. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Rungrojwittayakul, O.; Kan, J.Y.; Shiozaki, K.; Swamidass, R.S.; Goodacre, B.J.; Goodacre, C.J.; Lozada, J.L. Accuracy of 3D printed models created by two technologies of printers with different designs of model base. J. Prosthodont. 2020, 29, 124–128. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Z.; Pei, Z.; Qiu, J.; Wang, S. Current progress on the 3D printing of thermosets. Adv. Compos. Hybrid Mater. 2020, 3, 462–472. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, I.; Cho, D.W. Laser scanning path generation considering photopolymer solidification in micro-stereolithography. Microsyst. Technol. 2005, 11, 158–167. [Google Scholar] [CrossRef]
- Dikshit, V.; Goh, G.D.; Nagalingam, A.P.; Goh, G.L.; Yeong, W.Y. Recent progress in 3D printing of fiber-reinforced composite and nanocomposites. In Fiber-Reinforced Nanocomposites: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 371–394. [Google Scholar]
- Choosing the Right Material. Available online: https://support.formlabs.com/s/article/Choosing-the-Right-Material?language=en_US (accessed on 29 June 2021).
- Using Draft Resin. Available online: https://support.formlabs.com/s/article/Using-Draft-Resin?language=en_US (accessed on 13 May 2021).
- Layani, M.; Wang, X.; Magdassi, S. Novel materials for 3D printing by photopolymerization. Adv. Mater. 2018, 30, 1706344. [Google Scholar] [CrossRef]
- Mele, M.; Campana, G.; D’Avino, G. Life cycle impact assessment of desktop stereolithography. J. Clean. Prod. 2020, 244, 118743. [Google Scholar] [CrossRef]
- Groth, C.; Kravitz, N.D.; Jones, P.E.; Graham, J.W.; Redmond, W.R. Three-dimensional printing technology. J. Clin. Orthod. 2014, 48, 475–485. [Google Scholar]
- Miedzińska, D.; Gieleta, R.; Małek, E. Experimental study of strength properties of SLA resins under low and high strain rates. Mech. Mater. 2020, 141, 103245. [Google Scholar] [CrossRef]
- 3D Printers LONGER | Most Affordable 3D Printer. Available online: https://www.longer3d.com/collections/3d-printers?sort_by=price-ascending (accessed on 13 May 2021).
- Industrial 3D Printers—3D Printing. Available online: https://3dprinting.com/product-category/industrial-3d-printer/?filter_technology=sla (accessed on 13 May 2021).
- 3D Printers Comparison—Aniwaa. Available online: https://www.aniwaa.com/comparison/3d-printers/?filter_price_minimum&filter_price_maximum&filter_build_size_width&filter_build_size_height&filter_build_size_depth&filter_temperature_extruder&filter_temperature_chamber&filter_temperature_plate&save_manufacturer=Nanoscribe&filter_manufacturers%5B0%5D=Nanoscribe&filter_manufacturers%5B1%5D=UpNano (accessed on 18 May 2021).
- Agrawaal, H.; Thompson, J. Additive manufacturing (3D printing) for analytical chemistry. Talanta Open 2021, 3, 100036. [Google Scholar] [CrossRef]
- Kiania, N.; Babak, L. 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report; Wohlers Associates, Inc.: Fort Collins, CO, USA, 2014. [Google Scholar]
- Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754. [Google Scholar] [CrossRef]
- Ko, S.H.; Chung, J.; Hotz, N.; Nam, K.H.; Grigoropoulos, C.P. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. J. Micromech. Microeng. 2010, 20, 125010. [Google Scholar] [CrossRef]
- Gao, F.; Sonin, A.A. Precise deposition of molten microdrops: The physics of digital microfabrication. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1994, 444, 533–554. [Google Scholar]
- Reis, N.; Seerden, K.; Derby, B.; Halloran, J.; Evans, J. Direct inkjet deposition of ceramic green bodies: II—Jet behaviour and deposit formation. MRS Online Proc. Libr. (OPL) 1998, 542, 147. [Google Scholar] [CrossRef]
- Pilipović, A.; Raos, P.; Šercer, M. Experimental analysis of properties of materials for rapid prototyping. Int. J. Adv. Manuf. Technol. 2009, 40, 105–115. [Google Scholar] [CrossRef]
- Šercer, M.; Rezić, T.; Godec, D.; Oros, D.; Pilipović, A.; Ivušić, F.; Rezić, I.; Andlar, M.; Ludwig, R.; Šantek, B. Microreactor production by PolyJet matrix 3D-printing technology: Hydrodynamic characterization. Food Technol. Biotechnol. 2019, 57, 272–281. [Google Scholar] [CrossRef]
- Jacquet, J.R.; Ossant, F.; Levassort, F.; Grégoire, J.M. 3-D-Printed phantom fabricated by photopolymer jetting technology for high-frequency ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1048–1055. [Google Scholar] [CrossRef]
- Castiaux, A.D.; Pinger, C.W.; Hayter, E.A.; Bunn, M.E.; Martin, R.S.; Spence, D.M. PolyJet 3D-printed enclosed microfluidic channels without photocurable supports. Anal. Chem. 2019, 91, 6910–6917. [Google Scholar] [CrossRef]
- Sochol, R.; Sweet, E.; Glick, C.; Venkatesh, S.; Avetisyan, A.; Ekman, K.; Raulinaitis, A.; Tsai, A.; Wienkers, A.; Korner, K.; et al. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 2016, 16, 668–678. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.G.; Park, K.J.; Seok, S.; Shin, S.; Park, J.Y.; Heo, Y.S.; Lee, S.J.; Lee, T.J. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014, 4, 32876–32880. [Google Scholar] [CrossRef]
- Childs, E.H.; Latchman, A.V.; Lamont, A.C.; Hubbard, J.D.; Sochol, R.D. Additive Assembly for PolyJet-Based Multi-Material 3D Printed Microfluidics. J. Microelectromech. Syst. 2020, 29, 1094–1096. [Google Scholar] [CrossRef]
- Gaynor, A.T.; Meisel, N.A.; Williams, C.B.; Guest, J.K. Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J. Manuf. Sci. Eng. 2014, 136, 061015. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Lim, J.C.; Liu, Y.; Qi, X.; Yap, Y.L.; Dikshit, V.; Yeong, W.Y.; Wei, J. Performance evaluation of projet multi-material jetting 3D printer. Virtual Phys. Prototyp. 2017, 12, 95–103. [Google Scholar] [CrossRef]
- Kim, G.B.; Lee, S.; Kim, H.; Yang, D.H.; Kim, Y.H.; Kyung, Y.S.; Kim, C.S.; Choi, S.H.; Kim, B.J.; Ha, H.; et al. Three-dimensional printing: Basic principles and applications in medicine and radiology. Korean J. Radiol. 2016, 17, 182. [Google Scholar] [CrossRef] [Green Version]
- Levi, H. Additive Manufacturing in Technical Ceramics. Interceram-Int. Ceram. Rev. 2018, 67, 12–13. [Google Scholar] [CrossRef]
- Oh, Y.; Bharambe, V.; Mummareddy, B.; Martin, J.; McKnight, J.; Abraham, M.A.; Walker, J.M.; Rogers, K.; Conner, B.; Cortes, P.; et al. Microwave dielectric properties of zirconia fabricated using NanoParticle Jetting™. Addit. Manuf. 2019, 27, 586–594. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, C.; Yin, Y.; Liu, P.; Li, Z.; Xiao, M.; Cai, W.; Qu, Y. An overview of metallic additive manufacturing: Technologies, barriers and future trends. Available online: http://www.toweld.com/attachment/2017/0705/20170705093520855.pdf (accessed on 7 December 2021).
- 3D Printers Comparison—Aniwaa. Available online: https://www.aniwaa.com/comparison/3d-printers/?filter_price_minimum&filter_price_maximum&filter_build_size_width&filter_build_size_height&filter_build_size_depth&filter_temperature_extruder&filter_temperature_chamber&filter_temperature_plate&filter_technology%5B0%5D=material_jetting&filter_manufacturers%5B0%5D=XJet (accessed on 18 May 2021).
- PolyJet 3D Printers (Comparison Guide). Available online: https://www.treatstock.com/machines/3d-printers/technology-PolyJet (accessed on 17 May 2021).
- 3D Printers Comparison—Aniwaa. Available online: https://www.aniwaa.com/comparison/3d-printers/?sort=price&order=desc&filter_price_minimum&filter_price_maximum&filter_build_size_width&filter_build_size_height&filter_build_size_depth&filter_temperature_extruder&filter_temperature_chamber&filter_temperature_plate&filter_technology%5B0%5D=material_jetting&save_manufacturer=3D%20Systems%2CStratasys%2CXJet&filter_manufacturers%5B0%5D=3D%20Systems&filter_manufacturers%5B1%5D=Stratasys. (accessed on 18 May 2021).
- Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Singh, D.D.; Mahender, T.; Reddy, A.R. Powder bed fusion process: A brief review. Mater. Today Proc. 2021, 46, 350–355. [Google Scholar] [CrossRef]
- Miron-Borzan, C.S.; Dudescu, M.C.; Berce, P. Bending and compression tests for PA 2200 parts obtained using Selective Laser Sintering method. MATEC Web Conf. 2017, 94, 03010. [Google Scholar] [CrossRef] [Green Version]
- Vanderesse, N.; Ky, I.; González, F.Q.; Nuño, N.; Bocher, P. Image analysis characterization of periodic porous materials produced by additive manufacturing. Mater. Des. 2016, 92, 767–778. [Google Scholar] [CrossRef]
- Shellabear, M.; Nyrhilä, O. DMLS-Development history and state of the art. In Proceedings of the 4th Laser Assisted Netshape Engineering, Erlangen, Germany, 21–24 September 2004; pp. 21–24. [Google Scholar]
- Fina, F.; Gaisford, S.; Basit, A.W. Powder bed fusion: The working process, current applications and opportunities. In 3D Printing of Pharmaceuticals; Springer: Berlin/Heidelberg, Germany, 2018; pp. 81–105. [Google Scholar]
- Deckard, C.R.; Beaman, J.J., Jr. Selective Laser Sintering with Assisted Powder Handling. U.S. Patent 4 938 816, 3 July 1990. [Google Scholar]
- Launhardt, M.; Wörz, A.; Loderer, A.; Laumer, T.; Drummer, D.; Hausotte, T.; Schmidt, M. Detecting surface roughness on SLS parts with various measuring techniques. Polym. Test. 2016, 53, 217–226. [Google Scholar] [CrossRef]
- Harding, M.J.; Brady, S.; O’Connor, H.; Lopez-Rodriguez, R.; Edwards, M.D.; Tracy, S.; Dowling, D.; Gibson, G.; Girard, K.P.; Ferguson, S. 3D printing of PEEK reactors for flow chemistry and continuous chemical processing. React. Chem. Eng. 2020, 5, 728–735. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Bai, L.; Gong, C.; Chen, X.; Sun, Y.; Zhang, J.; Cai, L.; Zhu, S.; Xie, S.Q. Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications. Metals 2019, 9, 1004. [Google Scholar] [CrossRef] [Green Version]
- Papazoglou, E.L.; Karkalos, N.E.; Karmiris-Obratański, P.; Markopoulos, A.P. On the Modeling and Simulation of SLM and SLS for Metal and Polymer Powders: A Review. Arch. Comput. Methods Eng. 2021, 1–33. [Google Scholar] [CrossRef]
- Bineli, A.R.R.; Peres, A.P.G.; Jardini, A.L.; Maciel Filho, R. Direct metal laser sintering (DMLS): Technology for design and construction of microreactors. In Proceedings of the 6º Congress Obrasileiro de Engenharia de Fabrica ÇÃO, Caxias do Sul, Brazil, 11–15 April 2011; Volume 11. [Google Scholar]
- Delgado, J.; Ciurana, J.; Rodríguez, C.A. Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int. J. Adv. Manuf. Technol. 2012, 60, 601–610. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Akinlabi, E.T. Additive Manufacturing of Funtionally Graded Materials. In Functionally Graded Materials; Springer: Berlin/Heidelberg, Germany, 2017; pp. 47–68. [Google Scholar]
- Karlsson, J.; Snis, A.; Engqvist, H.; Lausmaa, J. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti–6Al–4V powder fractions. J. Mater. Process. Technol. 2013, 213, 2109–2118. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 2010, 3, 249–259. [Google Scholar] [CrossRef]
- Cloots, M.; Spierings, A.; Wegener, K. Assessing new support minimizing strategies for the additive manufacturing technology SLM. In Proceedings of the 24th International SFF Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 12–14 August 2013; pp. 631–643. [Google Scholar]
- Capel, A.J.; Edmondson, S.; Christie, S.D.; Goodridge, R.D.; Bibb, R.J.; Thurstans, M. Design and additive manufacture for flow chemistry. Lab Chip 2013, 13, 4583–4590. [Google Scholar] [CrossRef] [Green Version]
- Leong, K.; Cheah, C.; Chua, C. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24, 2363–2378. [Google Scholar] [CrossRef]
- Sintratec Kit Review—Affordable Desktop SLS 3D Printer (under $6000). Available online: https://www.aniwaa.com/product/3d-printers/sintratec-sintratec-kit/ (accessed on 21 December 2021).
- TPM3D S600DL Review—An Industrial SLS 3D Printer. Available online: https://www.aniwaa.com/product/3d-printers/tpm3d-s600dl/ (accessed on 21 December 2021).
- Meteyer, S.; Xu, X.; Perry, N.; Zhao, Y.F. Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia Cirp 2014, 15, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Garzón, E.O.; Alves, J.L.; Neto, R.J. Post-process influence of infiltration on binder jetting technology. In Materials Design and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 233–255. [Google Scholar]
- Sachs, E.; Cima, M.; Cornie, J. Three-dimensional printing: Rapid tooling and prototypes directly from a CAD model. CIRP Ann. 1990, 39, 201–204. [Google Scholar] [CrossRef]
- Xu, X.; Meteyer, S.; Perry, N.; Zhao, Y.F. Energy consumption model of Binder-jetting additive manufacturing processes. Int. J. Prod. Res. 2015, 53, 7005–7015. [Google Scholar] [CrossRef]
- Bai, Y.; Williams, C.B. An exploration of binder jetting of copper. Rapid Prototyp. J. 2015, 21, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—Selection guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef] [Green Version]
- Ziaee, M.; Crane, N.B. Binder jetting: A review of process, materials, and methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Moon, J.; Caballero, A.C.; Hozer, L.; Chiang, Y.M.; Cima, M.J. Fabrication of functionally graded reaction infiltrated SiC–Si composite by three-dimensional printing (3DP™) process. Mater. Sci. Eng. A 2001, 298, 110–119. [Google Scholar] [CrossRef]
- Gardan, J. Method for characterization and enhancement of 3D printing by binder jetting applied to the textures quality. Assem. Autom. 2017, 37, 162–169. [Google Scholar] [CrossRef]
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 2021, 119, 100707. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Hoff, T.; Garon, M.; Zhao, Y. Elastic modulus of 316 stainless steel lattice structure fabricated via binder jetting process. Mater. Sci. Technol. 2016, 32, 648–656. [Google Scholar] [CrossRef]
- Dimitrov, D.; Schreve, K.; de Beer, N. Advances in three dimensional printing–state of the art and future perspectives. Rapid Prototyp. J. 2006, 12, 136–147. [Google Scholar] [CrossRef] [Green Version]
- ComeTrue M10 Review—Industrial Ceramic 3D Printer. Available online: https://www.aniwaa.com/product/3d-printers/cometrue-m10/ (accessed on 22 December 2021).
- Luxexcel VisionEngine Review—3D Printed Lens Platform. Available online: https://www.aniwaa.com/product/3d-printers/luxexcel-visionengine/ (accessed on 22 December 2021).
- Macdonald, N.P.; Cabot, J.M.; Smejkal, P.; Guijt, R.M.; Paull, B.; Breadmore, M.C. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 2017, 89, 3858–3866. [Google Scholar] [CrossRef]
- Zeraatkar, M.; Filippini, D.; Percoco, G. On the impact of the fabrication method on the performance of 3D printed mixers. Micromachines 2019, 10, 298. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Zhang, M.; Yeong, W.Y. Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid. Nanofluid. 2016, 20, 5. [Google Scholar] [CrossRef]
- Urrios, A.; Parra-Cabrera, C.; Bhattacharjee, N.; Gonzalez-Suarez, A.M.; Rigat-Brugarolas, L.G.; Nallapatti, U.; Samitier, J.; DeForest, C.A.; Posas, F.; Garcia-Cordero, J.L.; et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 2016, 16, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Ionita, C.N.; Mokin, M.; Varble, N.; Bednarek, D.R.; Xiang, J.; Snyder, K.V.; Siddiqui, A.H.; Levy, E.I.; Meng, H.; Rudin, S. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. In Proceedings of the Medical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging, San Diego, CA, USA, 16–18 February 2014; Volume 9038, p. 90380M. [Google Scholar]
- Keating, S.J.; Gariboldi, M.I.; Patrick, W.G.; Sharma, S.; Kong, D.S.; Oxman, N. 3D printed multimaterial microfluidic valve. PLoS ONE 2016, 11, e0160624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kopfmüller, T.; Achermann, R.; Zhang, J.; Teixeira, A.; Shen, Y.; Jensen, K.F. Accessing multidimensional mixing via 3D printing and showerhead micromixer design. AIChE J. 2020, 66, e16873. [Google Scholar] [CrossRef]
- Ezoji, M.; Razavi-Nouri, M.; Rezadoust, A.M. Influence of Layer Thickness on the Tensile Properties of the Samples Manufactured by Fused Deposition Modelling. In Proceedings of the 12th International Seminar on Polymer Science and Technology, Islamic Azad University, Tehran, Iran, 2–5 November 2016. [Google Scholar]
- Nuñez, P.; Rivas, A.; García-Plaza, E.; Beamud, E.; Sanz-Lobera, A. Dimensional and surface texture characterization in fused deposition modelling (FDM) with ABS plus. Procedia Eng. 2015, 132, 856–863. [Google Scholar] [CrossRef]
- Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 2015, 8, 5834–5846. [Google Scholar] [CrossRef]
- Torres, J.; Cotelo, J.; Karl, J.; Gordon, A.P. Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM 2015, 67, 1183–1193. [Google Scholar] [CrossRef]
- Zhang, Z.c.; Li, P.l.; Chu, F.t.; Shen, G. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. J. Orofac. Orthop. Kieferorthopädie 2019, 80, 194–204. [Google Scholar] [CrossRef]
- Walczak, R.; Adamski, K. Inkjet 3D printing of microfluidic structures—On the selection of the printer towards printing your own microfluidic chips. J. Micromech. Microeng. 2015, 25, 085013. [Google Scholar] [CrossRef]
- Chen, J.V.; Dang, A.B.; Dang, A. Comparing cost and print time estimates for six commercially-available 3D printers obtained through slicing software for clinically relevant anatomical models. 3D Print. Med. 2021, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Narra, S.P.; Rollett, A. Exploring the fabrication limits of thin-wall structures in a laser powder bed fusion process. Int. J. Adv. Manuf. Technol. 2020, 110, 191–207. [Google Scholar] [CrossRef]
- Shrestha, S.; Manogharan, G. Optimization of binder jetting using Taguchi method. JOM 2017, 69, 491–497. [Google Scholar] [CrossRef]
- Li, S.J.; Cao, S. Print Parameters Influence on Parts’ Quality and Calibration with 3DP-Part I: Print Parameters Influence on Parts’ Surface Topography. Adv. Mater. Res. 2012, 399, 1639–1645. [Google Scholar] [CrossRef]
- Wu, J. Study on optimization of 3D printing parameters. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 392, p. 062050. [Google Scholar]
- Lemu, H.G.; Kurtovic, S. 3D printing for rapid manufacturing: Study of dimensional and geometrical accuracy. In IFIP International Conference on Advances in Production Management Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 470–479. [Google Scholar]
- Heidt, B.; Rogosic, R.; Bonni, S.; Passariello-Jansen, J.; Dimech, D.; Lowdon, J.W.; Arreguin-Campos, R.; Steen Redeker, E.; Eersels, K.; Diliën, H.; et al. The liberalization of microfluidics: Form 2 benchtop 3D printing as an affordable alternative to established manufacturing methods. Phys. Status Solidi A 2020, 217, 1900935. [Google Scholar] [CrossRef]
- Ian Gibson, I.G. Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Choi, J.W.; Kim, H.C.; Wicker, R. Multi-material stereolithography. J. Mater. Process. Technol. 2011, 211, 318–328. [Google Scholar] [CrossRef]
- Lee, K.Y.; Cho, J.W.; Chang, N.Y.; Chae, J.M.; Kang, K.H.; Kim, S.C.; Cho, J.H. Accuracy of three-dimensional printing for manufacturing replica teeth. Korean J. Orthod. 2015, 45, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.; Chueh, Y.H.; Zhang, X.; Huang, Y.; Chen, Q.; Li, L. Easy-To-Remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion. J. Manuf. Sci. Eng. 2019, 141, 071002. [Google Scholar] [CrossRef]
- Kumar, A.; Bai, Y.; Eklund, A.; Williams, C.B. Effects of hot isostatic pressing on copper parts fabricated via binder jetting. Procedia Manuf. 2017, 10, 935–944. [Google Scholar] [CrossRef]
- Fischer, F. Thermoplastics: The Best Choice for 3D Printing; White Paper; Stratasys Inc.: Edn Prairie, MN, USA, 2011. [Google Scholar]
- Tan, L.J.; Zhu, W.; Zhou, K. Recent progress on polymer materials for additive manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar] [CrossRef]
- Sampson, K.L.; Deore, B.; Go, A.; Nayak, M.A.; Orth, A.; Gallerneault, M.; Malenfant, P.R.; Paquet, C. Multimaterial vat polymerization additive manufacturing. ACS Appl. Polym. Mater. 2021, 3, 4304–4324. [Google Scholar] [CrossRef]
- Xu, Z.; Ha, C.S.; Kadam, R.; Lindahl, J.; Kim, S.; Wu, H.F.; Kunc, V.; Zheng, X. Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices. Addit. Manuf. 2020, 32, 101106. [Google Scholar] [CrossRef]
- Gonzalez, J.; Mireles, J.; Lin, Y.; Wicker, R.B. Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram. Int. 2016, 42, 10559–10564. [Google Scholar] [CrossRef] [Green Version]
- Doyle, M.; Agarwal, K.; Sealy, W.; Schull, K. Effect of layer thickness and orientation on mechanical behavior of binder jet stainless steel 420+ bronze parts. Procedia Manuf. 2015, 1, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Jacob, G.; Jacob, G.; Brown, C.U.; Donmez, M.A.; Watson, S.S.; Slotwinski, J. Effects of Powder Recycling on Stainless Steel Powder and Built Material Properties in Metal Powder Bed Fusion Processes; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- 3D Printers Comparison—Aniwaa. Available online: https://www.aniwaa.com/comparison/3d-printers/?filter_price_minimum&filter_price_maximum&filter_build_size_width&filter_build_size_height&filter_build_size_depth&filter_temperature_extruder&filter_temperature_chamber&filter_temperature_plate (accessed on 3 June 2021).
- Kitson, P.J.; Rosnes, M.H.; Sans, V.; Dragone, V.; Cronin, L. Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 2012, 12, 3267–3271. [Google Scholar] [CrossRef]
- Bishop, G.W.; Satterwhite-Warden, J.E.; Bist, I.; Chen, E.; Rusling, J.F. Electrochemiluminescence at bare and DNA-coated graphite electrodes in 3D-printed fluidic devices. ACS Sens. 2016, 1, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratasys Fortus 250mc Review—3D Printer. Available online: https://www.aniwaa.com/product/3d-printers/stratasys-fortus-250mc/ (accessed on 26 May 2021).
- Stratasys Object30 Pro Review—3D Printer. Available online: https://www.aniwaa.com/product/3d-printers/stratasys-objet30-pro/ (accessed on 26 May 2021).
- Romanov, V.; Samuel, R.; Chaharlang, M.; Jafek, A.R.; Frost, A.; Gale, B.K. FDM 3D printing of high-pressure, heat-resistant, transparent microfluidic devices. Anal. Chem. 2018, 90, 10450–10456. [Google Scholar] [CrossRef]
- Santana, H.S.; Rodrigues, A.C.; Lopes, M.G.; Russo, F.N.; Silva, J.L., Jr.; Taranto, O.P. 3D printed millireactors for process intensification. Chin. J. Chem. Eng. 2020, 28, 180–190. [Google Scholar] [CrossRef]
- Koprnicky, J.; Šafka, J.; Ackermann, M. Using of 3D Printing Technology in Low Cost Prosthetics. Mater. Sci. Forum 2018, 919, 199–206. [Google Scholar] [CrossRef]
- Ho, C.M.B.; Ng, S.H.; Li, K.H.H.; Yoon, Y.J. 3D printed microfluidics for biological applications. Lab Chip 2015, 15, 3627–3637. [Google Scholar] [CrossRef]
- Elser, A.; Königs, M.; Verl, A.; Servos, M. On achieving accuracy and efficiency in Additive Manufacturing: Requirements on a hybrid CAM system. Procedia CIRP 2018, 72, 1512–1517. [Google Scholar] [CrossRef]
- Mikolajczyk, T.; Malinowski, T.; Moldovan, L.; Fuwen, H.; Paczkowski, T.; Ciobanu, I. CAD CAM System for Manufacturing Innovative Hybrid Design Using 3D Printing. Procedia Manuf. 2019, 32, 22–28. [Google Scholar] [CrossRef]
- Szilvśi-Nagy, M.; Matyasi, G. Analysis of STL files. Math. Comput. Model. 2003, 38, 945–960. [Google Scholar] [CrossRef]
- Kim, S.; Yang, S.O. Transforming algorithm of 3D model data into G-code for 3D printers in Distributed Systems. In Advances in Computer Science and Ubiquitous Computing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1074–1078. [Google Scholar]
- Slicer 3D: Los Mejores Softwares de Corte de 2021|All3DP. Available online: https://all3dp.com/es/1/slicer-3d-programa-corte-impresora-3d/ (accessed on 25 May 2021).
- 3DXpert 3D Additive Manufacturing Software. Available online: https://www.3dsystems.com/software/3dxpert?smtNoRedir=1&_ga=2.214088855.1675556437.1640305702-1223579234.1640305702 (accessed on 22 December 2021).
- 3D Printing Software Data Preparation for 3D Printing. Available online: https://www.eos.info/en/additive-manufacturing/software-3d-printing/data-preparation-3d-printing (accessed on 22 December 2021).
- Baumann, F.; Bugdayci, H.; Grunert, J.; Keller, F.; Roller, D. Influence of slicing tools on quality of 3D printed parts. Comput.-Aided Des. Appl. 2016, 13, 14–31. [Google Scholar] [CrossRef]
- Dhore, G.; Jagtap, R.; Bhakad, S.; Yadav, P.; Sutar, M.A.; Sawrate, M.S. Exploring 3D Printing using CURA: A Slicing software. Int. J. 2021, 5, 212–222. [Google Scholar]
- Šljivic, M.; Pavlovic, A.; Kraišnik, M.; Ilić, J. Comparing the accuracy of 3D slicer software in printed enduse parts. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 659, p. 012082. [Google Scholar]
- Falahati, M.; Ahmadvand, P.; Safaee, S.; Chang, Y.C.; Lyu, Z.; Chen, R.; Li, L.; Lin, Y. Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today 2020, 40, 215–245. [Google Scholar] [CrossRef]
- Espalin, D.; Muse, D.W.; MacDonald, E.; Wicker, R.B. 3D Printing multifunctionality: Structures with electronics. Int. J. Adv. Manuf. Technol. 2014, 72, 963–978. [Google Scholar] [CrossRef]
- Bahl, S.; Nagar, H.; Singh, I.; Sehgal, S. Smart materials types, properties and applications: A review. Mater. Today Proc. 2020, 28, 1302–1306. [Google Scholar] [CrossRef]
- Jiménez, M.; Romero, L.; Domínguez, I.A.; Espinosa, M.d.M.; Domínguez, M. Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity 2019, 2019, 9656938. [Google Scholar] [CrossRef] [Green Version]
- Ashima, R.; Haleem, A.; Bahl, S.; Javaid, M.; Mahla, S.K.; Singh, S. Automation and manufacturing of smart materials in Additive Manufacturing technologies using Internet of Things towards the adoption of Industry 4.0. Mater. Today Proc. 2021, 45, 5081–5088. [Google Scholar] [CrossRef]
- Shoele, K.; Mittal, R. Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer. Phys. Fluids 2014, 26, 127103. [Google Scholar] [CrossRef]
- Gallegos, R.K.B.; Sharma, R.N. Flags as vortex generators for heat transfer enhancement: Gaps and challenges. Renew. Sustain. Energy Rev. 2017, 76, 950–962. [Google Scholar] [CrossRef]
- Lee, J.B.; Park, S.G.; Sung, H.J. Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow. Int. J. Heat Mass Transf. 2018, 116, 1003–1015. [Google Scholar] [CrossRef]
- Shi, J.; Hu, J.; Schafer, S.R.; Chen, C.L.C. Numerical study of heat transfer enhancement of channel via vortex-induced vibration. Appl. Therm. Eng. 2014, 70, 838–845. [Google Scholar] [CrossRef]
Categories | Technologies | Materials |
---|---|---|
Binder jetting | 3D printing | Metal, Polymer, Ceramic, Sand |
Direct energy deposition | Laser Engineered Net Shaping, Electron Beam Additive Manufacture | Metal powder: steel, titanium, … |
Material extrusion | Fused Deposition Modeling, Direct Ink Writing | Polymer, Hydrogel, Alloy, Pure metal |
Material jetting | Polyjet, Multijet, NanoParticle Jetting | Photopolymer, Wax, Metal, Ceramic |
Powder bed fusion | Selective Laser Sintering, Selective Laser Melting, Direct Metal Laser Sintering, Electron Beam Melting, Selective Heat Sintering | Metal, Polymer, Ceramic |
Sheet lamination | Ultrasonic Consolidation, Laminated Object Manufactured | Hybrids, Metal, Ceramic |
Vat photopolymerization | Stereolithography, Digital Light Processing, Liquid Crystal Display, Continuous Liquid Interface Production, Two-Photon Polymerization | Photopolymer, Ceramic |
Materials | Bed Temperature [°C] | Extrusion Temperature [°C] |
---|---|---|
PLA | 60–90 | 175–220 |
ABS | 80–100 | 230–260 |
PET-G | 50–80 | 220–260 |
ASA | 90–110 | 250–280 |
PP | 60–110 | 220–260 |
References | Technology | Fluidic Structure |
---|---|---|
[132] | Polyjet | Microreactor: Y-shaped |
[134] | Polyjet | Enclosed microfluidic channels: serpentine and Y-mixers |
[135] | Multijet | Microfluidic circuitry |
[137] | Polyjet | Multimaterial microfluidic capacitor |
[183] | FDM, DLP and Polyjet | Y-junction microfluidic device |
[184] | FDM, SLA and Polyjet | Classical Y-shaped connected channels |
[185] | Inkjet and FDM | Microfluidic chip |
[186] | DLP | Water-impermeable, biocompatible, transparent and cheap devices |
[187] | Polyjet | Phantom of a right internal carotid |
[188] | Polyjet | Multimaterial microfluidic proportional valve |
[189] | DMLS and Binder jetting | T-mixers into a laminated “showerhead” structure |
[165] | SLM | Milli-reactor |
Material Extrusion | Vat Photopolymerization | Material Jetting | Powder Bed Fusion | Binder Jetting | |
---|---|---|---|---|---|
[190,191,192,193] | [183,184,194] | [97,183,195,196] | [165,197] | [173,198,199] | |
500 | |||||
300 | 100 | 30 | 700 | 200 | |
Resolution/layer thickness [µm] | 200 | 50 | 16 | 400 | 100 |
100 | 25 | 14 | 200 | 80 | |
50 |
Specifications | Categories | ||||
---|---|---|---|---|---|
Material Extrusion | Vat Photopolymerization | Material Jetting | Powder Bed Fusion | Binder Jetting | |
Printing time [222] | ⋆⋆ | ⋆ | ⋆⋆⋆ | ⋆ | ⋆⋆ |
Precision | ⋆ | ⋆⋆ | ⋆⋆⋆ | ⋆⋆⋆ | ⋆⋆⋆ |
Resolution | ⋆ | ⋆⋆ | ⋆⋆⋆ | ⋆ | ⋆ |
Materials (variety) | ⋆⋆ | ⋆ | ⋆⋆⋆ | ⋆⋆ | ⋆⋆⋆ |
Material (transparency issues) | ⋆ | ⋆⋆ | ⋆⋆⋆ | ⋆ | ⋆ |
Capacity of the printing bed | ⋆⋆⋆ | ⋆⋆⋆ | ⋆⋆⋆ | ⋆⋆ | ⋆⋆ |
Leakage [165] | ⋆ | ⋆⋆⋆ | ⋆⋆⋆ | ⋆⋆⋆ | ⋆⋆⋆ |
Printer price | ⋆⋆⋆ | ⋆⋆ | ⋆ | ⋆ | ⋆ |
Material price | ⋆⋆⋆ | ⋆⋆ | ⋆ | ⋆ | ⋆ |
Specifications | Categories | ||||
---|---|---|---|---|---|
Material Extrusion | Vat phOtopolymerization | Material Jetting | Powder Bed Fusion | Binder Jetting | |
Resolution, precision and accuracy | [190,191,192,193] [183,184,200,220,221] | [183,184] [194,202] | [97,135,183] [184,185,195] | [165] [197] | [173,178] [198,199] |
Materials | [85,190,192] [187,193,205,208] | [111,116,120] [186,204,223] | [132] [137,188] | [149,150,165] [189,206] | [4,172,173] [189,207] |
Prices | [88,89,216,220] | [122] [123,217] | [96,145,146] | [167,168] | [181,182] |
Categories | |||||
---|---|---|---|---|---|
Material Extrusion | Vat Photopolymerization | Material Jetting | Powder Bed Fusion | Binder Jetting | |
Popular printer brands | Ultimaker, bq, MakerBot, BCN3D, Creality, Stratasys, etc. | 3D Systems, Nexa3D Formlabs, Miicraft, etc. | Stratasys, 3D Systems | 3D Systems, EOS | ExOne, VoxelJet |
Popular slicers | Cura, PrusaSlicer | PrusaSlicer, ChiTuBox, PreForm | GrabCAD Print, 3D Sprint, 3DXpert | 3DXpert, EOSPRINT 2 | 3DPrinterOS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Cardosa, M.; Granados-Ortiz, F.-J.; Ortega-Casanova, J. A Review on Additive Manufacturing of Micromixing Devices. Micromachines 2022, 13, 73. https://doi.org/10.3390/mi13010073
Garcia-Cardosa M, Granados-Ortiz F-J, Ortega-Casanova J. A Review on Additive Manufacturing of Micromixing Devices. Micromachines. 2022; 13(1):73. https://doi.org/10.3390/mi13010073
Chicago/Turabian StyleGarcia-Cardosa, Marina, Francisco-Javier Granados-Ortiz, and Joaquín Ortega-Casanova. 2022. "A Review on Additive Manufacturing of Micromixing Devices" Micromachines 13, no. 1: 73. https://doi.org/10.3390/mi13010073
APA StyleGarcia-Cardosa, M., Granados-Ortiz, F. -J., & Ortega-Casanova, J. (2022). A Review on Additive Manufacturing of Micromixing Devices. Micromachines, 13(1), 73. https://doi.org/10.3390/mi13010073